In (4.21.21)â(4.21.23) Table 4.16.1 and analytic continuation will assist in resolving sign ambiguities.
4.21.24 sin â¡ ( â z ) = â sin â¡ z , 4.21.25 cos â¡ ( â z ) = cos â¡ z , 4.21.26 tan â¡ ( â z ) = â tan â¡ z . 4.21.30 sin â¡ ( 3 ⢠z ) = 3 ⢠sin â¡ z â 4 ⢠sin3 â¡ z , 4.21.31 cos â¡ ( 3 ⢠z ) = â 3 ⢠cos â¡ z + 4 ⢠cos3 â¡ z , 4.21.32 sin â¡ ( 4 ⢠z ) = 8 ⢠cos3 â¡ z ⢠sin â¡ z â 4 ⢠cos â¡ z ⢠sin â¡ z , 4.21.33 cos â¡ ( 4 ⢠z ) = 8 ⢠cos4 â¡ z â 8 ⢠cos2 â¡ z + 1 . De Moivreâs TheoremWhen n â â¤
This result is also valid when n is fractional or complex, provided that â Ï â¤ â â¡ z â¤ Ï .
4.21.35 sin â¡ ( n ⢠z ) = 2 n â 1 ⢠â k = 0 n â 1 sin â¡ ( z + k â¢ Ï n ) , n = 1 , 2 , 3 , ⦠.If t = tan â¡ ( 1 2 ⢠z ) , then
4.21.36 sin â¡ z = 2 ⢠t 1 + t2 , cos â¡ z = 1 â t2 1 + t2 , d z = 2 1 + t2 ⢠d t . §4.21(iv) Real and Imaginary Parts; ModuliWith z = x + i ⢠y
4.21.37 sin â¡ z = sin â¡ x ⢠cosh â¡ y + i ⢠cos â¡ x ⢠sinh â¡ y , 4.21.38 cos â¡ z = cos â¡ x ⢠cosh â¡ y â i ⢠sin â¡ x ⢠sinh â¡ y , 4.21.39 tan â¡ z = sin â¡ ( 2 ⢠x ) + i ⢠sinh â¡ ( 2 ⢠y ) cos â¡ ( 2 ⢠x ) + cosh â¡ ( 2 ⢠y ) , 4.21.40 cot â¡ z = sin â¡ ( 2 ⢠x ) â i ⢠sinh â¡ ( 2 ⢠y ) cosh â¡ ( 2 ⢠y ) â cos â¡ ( 2 ⢠x ) .RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.5