A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://dlmf.nist.gov/27.14 below:

§27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory

§27.14 Unrestricted Partitions Contents
  1. §27.14(i) Partition Functions
  2. §27.14(ii) Generating Functions and Recursions
  3. §27.14(iii) Asymptotic Formulas
  4. §27.14(iv) Relation to Modular Functions
  5. §27.14(v) Divisibility Properties
  6. §27.14(vi) Ramanujan’s Tau Function
§27.14(i) Partition Functions

A fundamental problem studies the number of ways n can be written as a sum of positive integers ≤ n , that is, the number of solutions of

The number of summands is unrestricted, repetition is allowed, and the order of the summands is not taken into account. The corresponding unrestricted partition function is denoted by p ⁡ ( n ) , and the summands are called parts; see §26.9(i). For example, p ⁡ ( 5 ) = 7 because there are exactly seven partitions of 5 : 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 .

The number of partitions of n into at most k parts is denoted by p k ⁡ ( n ) ; again see §26.9(i).

§27.14(ii) Generating Functions and Recursions

Euler introduced the reciprocal of the infinite product

as a generating function for the function p ⁡ ( n ) defined in §27.14(i):

with p ⁡ ( 0 ) = 1 . Euler’s pentagonal number theorem states that

where the exponents 1 , 2 , 5 , 7 , 12 , 15 , … are the pentagonal numbers, defined by

Multiplying the power series for f ⁡ ( x ) with that for 1 / f ⁡ ( x ) and equating coefficients, we obtain the recursion formula

where p ⁡ ( k ) is defined to be 0 if k < 0 . Logarithmic differentiation of the generating function 1 / f ⁡ ( x ) leads to another recursion:

where σ 1 ⁡ ( k ) is defined by (27.2.10) with α = 1 .

§27.14(iii) Asymptotic Formulas

These recursions can be used to calculate p ⁡ ( n ) , which grows very rapidly. For example, p ⁡ ( 10 ) = 42 , p ⁡ ( 100 ) = 1905 69292 , and p ⁡ ( 200 ) = 397 29990 29388 . For large n

where K = π ⁢ 2 / 3 (Hardy and Ramanujan (1918)). Rademacher (1938) derives a convergent series that also provides an asymptotic expansion for p ⁡ ( n ) :

27.14.9 p ⁡ ( n ) = 1 π ⁢ 2 ⁢ ∑ k = 1 ∞ k ⁢ A k ⁡ ( n ) ⁢ [ d d t ⁡ sinh ⁡ ( K ⁢ t / k ) t ] t = n − ( 1 / 24 ) ,

where

27.14.10 A k ⁡ ( n ) = ∑ h = 1 ( h , k ) = 1 k exp ⁡ ( π ⁢ i ⁢ s ⁡ ( h , k ) − 2 ⁢ π ⁢ i ⁢ n ⁢ h k ) ,

and s ⁡ ( h , k ) is a Dedekind sum given by

§27.14(iv) Relation to Modular Functions

Dedekind sums occur in the transformation theory of the Dedekind modular function η ⁡ ( τ ) , defined by

This is related to the function f ⁡ ( x ) in (27.14.2) by

η ⁡ ( τ ) satisfies the following functional equation: if a , b , c , d are integers with a ⁢ d − b ⁢ c = 1 and c > 0 , then

where ε = exp ⁡ ( π ⁢ i ⁢ ( ( ( a + d ) / ( 12 ⁢ c ) ) − s ⁡ ( d , c ) ) ) and s ⁡ ( d , c ) is given by (27.14.11).

For further properties of the function η ⁡ ( τ ) see §§23.15–23.19.

§27.14(v) Divisibility Properties

Ramanujan (1921) gives identities that imply divisibility properties of the partition function. For example, the Ramanujan identity

implies p ⁡ ( 5 ⁢ n + 4 ) ≡ 0 ( mod 5 ) . Ramanujan also found that p ⁡ ( 7 ⁢ n + 5 ) ≡ 0 ( mod 7 ) and p ⁡ ( 11 ⁢ n + 6 ) ≡ 0 ( mod 11 ) for all n . After decades of nearly fruitless searching for further congruences of this type, it was believed that no others existed, until it was shown in Ono (2000) that there are infinitely many. Ono proved that for every prime q > 3 there are integers a and b such that p ⁡ ( a ⁢ n + b ) ≡ 0 ( mod q ) for all n . For example, p ⁡ ( 1575 25693 ⁢ n + 1 11247 ) ≡ 0 ( mod 13 ) .

§27.14(vi) Ramanujan’s Tau Function

The discriminant function Δ ⁡ ( τ ) is defined by

and satisfies the functional equation

if a , b , c , d are integers with a ⁢ d − b ⁢ c = 1 and c > 0 .

The 24th power of η ⁡ ( τ ) in (27.14.12) with e 2 ⁢ π ⁢ i ⁢ τ = x is an infinite product that generates a power series in x with integer coefficients called Ramanujan’s tau function τ ⁡ ( n ) :

The tau function is multiplicative and satisfies the more general relation:

27.14.19 τ ⁡ ( m ) ⁢ τ ⁡ ( n ) = ∑ d | ( m , n ) d11 ⁢ τ ⁡ ( m ⁢ n d2 ) , m , n = 1 , 2 , … .

Lehmer (1947) conjectures that τ ⁡ ( n ) is never 0 and verifies this for all n < 21 49286 39999 by studying various congruences satisfied by τ ⁡ ( n ) , for example:

For further information on partitions and generating functions see Andrews (1976); also §§17.2–17.14, and §§26.9–26.10.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4