Prepare metadata.csv
and images.
The folder structure is
data/example ├── color.jpg ├── ... └── metadata.csv
Example of metadata.csv
.
file_name,text color.jpg,"a dog"
Fix dataset config.
train_dataloader = dict( ... dataset=dict( ... dataset="data/example", image_column="file_name", csv="metadata.csv", ... ) ... )
Run training.
Prepare images.
The folder structure is
data/example ├── dog1.jpg ├── ... └── dog5.jpg
Fix dataset config.
train_dataloader = dict( ... dataset=dict( ... dataset="data/example", ) ... )
Run training.
Prepare metadata.csv
and images.
The folder structure is
data/example ├── images | └── color.jpg ├── condition_images | └── color_keypoint.jpg └── metadata.csv
Example of metadata.csv
.
file_name,conditioning_image,text images/color.jpg,condition_images/color_keypoint.jpg,"a dog"
Fix dataset config.
train_dataloader = dict( ... dataset=dict( ... dataset="data/example", image_column="file_name", condition_column="conditioning_image", caption_column="text", csv="metadata.csv", ... ) ... )
Run training.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4