You can also check configs/lcm_lora/README.md
file.
All configuration files are placed under the configs/lcm_lora
folder.
Following is the example config fixed from the lcm_xl_lora_pokemon_blip config file in configs/lcm_lora/lcm_xl_lora_pokemon_blip.py
:
from mmengine.config import read_base from diffengine.engine.hooks import PeftSaveHook, VisualizationHook with read_base(): from .._base_.datasets.pokemon_blip_xl_pre_compute import * from .._base_.default_runtime import * from .._base_.models.lcm_xl_lora import * from .._base_.schedules.lcm_xl_50e import * train_dataloader.update(batch_size=2) optim_wrapper.update( optimizer=dict(lr=1e-5), accumulative_counts=2) custom_hooks = [ dict( type=VisualizationHook, prompt=["yoda pokemon"] * 4, height=1024, width=1024), dict(type=PeftSaveHook), ]Run training¶
Run train
# single gpu $ diffengine train ${CONFIG_FILE} # Example $ diffengine train lcm_xl_lora_pokemon_blip # multi gpus $ NPROC_PER_NODE=${GPU_NUM} diffengine train ${CONFIG_FILE}Inference with diffusers¶
Once you have trained a model, specify the path to the saved model and utilize it for inference using the diffusers.pipeline
module.
from pathlib import Path import torch from diffusers import DiffusionPipeline, AutoencoderKL, LCMScheduler from peft import PeftModel checkpoint = Path('work_dirs/lcm_xl_lora_pokemon_blip/step20850') prompt = 'yoda pokemon' vae = AutoencoderKL.from_pretrained( 'madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16, ) pipe = DiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-xl-base-1.0', vae=vae, scheduler=LCMScheduler.from_pretrained( 'stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler"), torch_dtype=torch.float16) pipe.to('cuda') pipe.unet = PeftModel.from_pretrained(pipe.unet, checkpoint / "unet", adapter_name="default") if (checkpoint / "text_encoder_one").exists(): pipe.text_encoder_one = PeftModel.from_pretrained( pipe.text_encoder_one, checkpoint / "text_encoder_one", adapter_name="default" ) if (checkpoint / "text_encoder_two").exists(): pipe.text_encoder_one = PeftModel.from_pretrained( pipe.text_encoder_two, checkpoint / "text_encoder_two", adapter_name="default" ) image = pipe( prompt, num_inference_steps=4, guidance_scale=1.0, height=1024, width=1024, ).images[0] image.save('demo.png')Results Example¶ lcm_xl_lora_pokemon_blip¶
You can check configs/lcm_lora/README.md
for more details.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4