You can also check configs/lcm/README.md
file.
All configuration files are placed under the configs/lcm
folder.
Following is the example config fixed from the lcm_xl_pokemon_blip config file in configs/lcm/lcm_xl_pokemon_blip.py
:
from mmengine.config import read_base from diffengine.engine.hooks import ( LCMEMAUpdateHook, SDCheckpointHook, VisualizationHook, ) with read_base(): from .._base_.datasets.pokemon_blip_xl_pre_compute import * from .._base_.default_runtime import * from .._base_.models.lcm_xl import * from .._base_.schedules.lcm_xl_50e import * train_dataloader.update(batch_size=2) optim_wrapper.update(accumulative_counts=2) # update every four times custom_hooks = [ dict( type=VisualizationHook, prompt=["yoda pokemon"] * 4, height=1024, width=1024), dict(type=SDCheckpointHook), dict(type=LCMEMAUpdateHook), ]Run training¶
Run train
# single gpu $ diffengine train ${CONFIG_FILE} # Example $ diffengine train lcm_xl_pokemon_blip # multi gpus $ NPROC_PER_NODE=${GPU_NUM} diffengine train ${CONFIG_FILE}Inference with diffusers¶
Once you have trained a model, specify the path to the saved model and utilize it for inference using the diffusers.pipeline
module.
Before inferencing, we should convert weights for diffusers format,
$ diffengine convert ${CONFIG_FILE} ${INPUT_FILENAME} ${OUTPUT_DIR} --save-keys ${SAVE_KEYS} # Example $ diffengine convert lcm_xl_pokemon_blip work_dirs/lcm_xl_pokemon_blip/epoch_50.pth work_dirs/lcm_xl_pokemon_blip --save-keys unet
Then we can run inference.
import torch from diffusers import DiffusionPipeline, AutoencoderKL, LCMScheduler, UNet2DConditionModel checkpoint = 'work_dirs/lcm_xl_pokemon_blip' prompt = 'yoda pokemon' unet = UNet2DConditionModel.from_pretrained( checkpoint, subfolder='unet', torch_dtype=torch.float16) vae = AutoencoderKL.from_pretrained( 'madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16, ) pipe = DiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-xl-base-1.0', unet=unet, scheduler=LCMScheduler.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler"), vae=vae, torch_dtype=torch.float16) pipe.to('cuda') image = pipe( prompt, num_inference_steps=4, height=1024, width=1024, guidance_scale=1.0, ).images[0] image.save('demo.png')Results Example¶ lcm_xl_pokemon_blip¶
You can check configs/lcm/README.md
for more details.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4