A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://developers.google.com/maps/documentation/javascript/legacy/place-autocomplete below:

Place Autocomplete | Maps JavaScript API

Skip to main content Place Autocomplete

Stay organized with collections Save and categorize content based on your preferences.

This product or feature is in Legacy status. For more information about the Legacy stage and how to migrate from Legacy to newer services, see Legacy products and features. Note: Server-side libraries

This page describes the client-side library available with the Maps JavaScript API. If you want to work with the Places API web service on your server, take a look at the Node.js Client for Google Maps Services. The page at that link also introduces the Java Client, Python Client and Go Client for Google Maps Services.

Introduction

Autocomplete is a feature of the Places library in the Maps JavaScript API. You can use autocomplete to give your applications the type-ahead-search behavior of the Google Maps search field. The autocomplete service can match on full words and substrings, resolving place names, addresses, and plus codes. Applications can therefore send queries as the user types, to provide on-the-fly place predictions. As defined by the Places API, a 'place' can be an establishment, a geographic location, or a prominent point of interest.

Getting started

Before using the Places library in the Maps JavaScript API, first verify that the Places API is enabled in the Google Cloud console, in the same project you set up for the Maps JavaScript API.

To view your list of enabled APIs:

  1. Go to the Google Cloud console.
  2. Click the Select a project button, then select the same project you set up for the Maps JavaScript API and click Open.
  3. From the list of APIs on the Dashboard, look for Places API.
  4. If you see the API in the list, you're all set. However, this project is in Legacy status. For more information about the Legacy stage and how to migrate from Legacy to newer services, see Legacy products and features. An exception is available for the Autocomplete and SearchBox widgets, which are not yet available as a GA product on the Places API (New).
Load the library

The Places service is a self-contained library, separate from the main Maps JavaScript API code. To use the features contained within this library, you must first load it using the libraries parameter in the Maps API bootstrap URL:

<script async
    src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&loading=async&libraries=places&callback=initMap">
</script>

See the Libraries Overview for more information.

Summary of classes

The API offers two types of autocomplete widgets, which you can add using the Autocomplete and SearchBox classes respectively. In addition, you can use the AutocompleteService class to retrieve autocomplete results programmatically (see the Maps JavaScript API Reference: AutocompleteService class).

Below is a summary of the classes available:

Add an Autocomplete widget Important: Using this widget requires enabling the Places API (Legacy) on your project. The Places (New) service offers an equivalent widget which is available in Preview.

The Autocomplete widget creates a text input field on your web page, supplies predictions of places in a UI pick list, and returns place details in response to a getPlace() request. Each entry in the pick list corresponds to a single place (as defined by the Places API).

The Autocomplete constructor takes two arguments:

Constrain Autocomplete predictions

By default, Place Autocomplete presents all place types, biased for predictions near the user's location, and fetches all available data fields for the user's selected place. Set Place Autocomplete options to present more relevant predictions based on your use case.

Set options at construction

The Autocomplete constructor accepts an AutocompleteOptions parameter to set constraints at widget creation. The following example sets the bounds, componentRestrictions, and types options to request establishment type places, favoring those within the specified geographic area and restricting predictions to only places within the United States. Setting the fields option specifies what information to return about the user's selected place.

Call setOptions() to change an option's value for an existing widget.

TypeScript
const center = { lat: 50.064192, lng: -130.605469 };
// Create a bounding box with sides ~10km away from the center point
const defaultBounds = {
  north: center.lat + 0.1,
  south: center.lat - 0.1,
  east: center.lng + 0.1,
  west: center.lng - 0.1,
};
const input = document.getElementById("pac-input") as HTMLInputElement;
const options = {
  bounds: defaultBounds,
  componentRestrictions: { country: "us" },
  fields: ["address_components", "geometry", "icon", "name"],
  strictBounds: false,
};

const autocomplete = new google.maps.places.Autocomplete(input, options);
Note: Read the guide on using TypeScript and Google Maps. JavaScript
const center = { lat: 50.064192, lng: -130.605469 };
// Create a bounding box with sides ~10km away from the center point
const defaultBounds = {
  north: center.lat + 0.1,
  south: center.lat - 0.1,
  east: center.lng + 0.1,
  west: center.lng - 0.1,
};
const input = document.getElementById("pac-input");
const options = {
  bounds: defaultBounds,
  componentRestrictions: { country: "us" },
  fields: ["address_components", "geometry", "icon", "name"],
  strictBounds: false,
};
const autocomplete = new google.maps.places.Autocomplete(input, options);
Specify data fields

Specify data fields to avoid being billed for Places Data SKUs you don't need. Include the fields property in the AutocompleteOptions that are passed to the widget constructor, as demonstrated in the previous example, or call setFields() on an existing Autocomplete object.

autocomplete.setFields(["place_id", "geometry", "name"]);
Define biases and search-area boundaries for Autocomplete

You can bias the autocomplete results to favor an approximate location or area, in the following ways:

The previous example demonstrates setting bounds at creation. The following examples demonstrate the other biasing techniques.

Note: If you don't supply any bounds or a map viewport, the API will attempt to detect the user's location from their IP address, and will bias the results to that location. Set a bounds whenever possible. Otherwise, different users may receive different predictions. Also, to generally improve predictions it is important to provide a sensible viewport such as one that you set by panning or zooming on the map, or a developer-set viewport based on device location and radius. When a radius is not available, 5 km is considered a sensible default for Place Autocomplete. Don't set a viewport with zero radius (a single point), a viewport that is only a few meters across (less than 100 m.), or a viewport that spans the globe. Change the bounds of an existing Autocomplete

Call setBounds() to change the search area on an existing Autocomplete to rectangular bounds.

TypeScript
const southwest = { lat: 5.6108, lng: 136.589326 };
const northeast = { lat: 61.179287, lng: 2.64325 };
const newBounds = new google.maps.LatLngBounds(southwest, northeast);

autocomplete.setBounds(newBounds);
Note: Read the guide on using TypeScript and Google Maps. JavaScript
const southwest = { lat: 5.6108, lng: 136.589326 };
const northeast = { lat: 61.179287, lng: 2.64325 };
const newBounds = new google.maps.LatLngBounds(southwest, northeast);

autocomplete.setBounds(newBounds);
Set the bounds to the map's viewport

Use bindTo() to bias the results to the map's viewport, even while that viewport changes.

TypeScript
autocomplete.bindTo("bounds", map);
Note: Read the guide on using TypeScript and Google Maps. JavaScript
autocomplete.bindTo("bounds", map);

Use unbind() to unbind the Autocomplete predictions from the map's viewport.

TypeScript
autocomplete.unbind("bounds");
autocomplete.setBounds({ east: 180, west: -180, north: 90, south: -90 });
Note: Read the guide on using TypeScript and Google Maps. JavaScript
autocomplete.unbind("bounds");
autocomplete.setBounds({ east: 180, west: -180, north: 90, south: -90 });

View example

Restrict the search to the current bounds

Set the strictBounds option to restrict the results to the current bounds, whether based on map viewport or rectangular bounds.

autocomplete.setOptions({ strictBounds: true });
Restrict predictions to a specific country

Use the componentRestrictions option or call setComponentRestrictions() to restrict the autocomplete search to a specific set of up to five countries.

TypeScript
autocomplete.setComponentRestrictions({
  country: ["us", "pr", "vi", "gu", "mp"],
});
Note: Read the guide on using TypeScript and Google Maps. JavaScript
autocomplete.setComponentRestrictions({
  country: ["us", "pr", "vi", "gu", "mp"],
});

View example

Constrain place types

Use the types option or call setTypes() to constrain predictions to certain place types. This constraint specifies a type or a type collection, as listed in Place Types. If no constraint is specified, all types are returned.

For the value of the types option or the value passed to setTypes(), you can specify either:

The request will be rejected if:

The Places Autocomplete demo demonstrates the differences in predictions between different place types.

Visit demo

Getting place information

When a user selects a place from the predictions attached to the autocomplete text field, the service fires a place_changed event. To get place details:

  1. Create an event handler for the place_changed event, and call addListener() on the Autocomplete object to add the handler.
  2. Call Autocomplete.getPlace() on the Autocomplete object, to retrieve a PlaceResult object, which you can then use to get more information about the selected place.

By default, when a user selects a place, autocomplete returns all of the available data fields for the selected place, and you will be billed accordingly. Use Autocomplete.setFields() to specify which place data fields to return. Read more about the PlaceResult object, including a list of place data fields that you can request. To avoid paying for data that you don't need, be sure to use Autocomplete.setFields() to specify only the place data that you will use.

IMPORTANT: It is not recommended to use autocomplete to refresh Place IDs, since each session will result in a charge. Instead, call getDetails() and specify only the place_id field.

The name property contains the description from Places Autocomplete predictions. You can read more about the description in the Places Autocomplete documentation.

For address forms, it is useful to get the address in structured format. To return the structured address for the selected place, call Autocomplete.setFields() and specify the address_components field.

The following example uses autocomplete to fill the fields in an address form.

TypeScript
function fillInAddress() {
  // Get the place details from the autocomplete object.
  const place = autocomplete.getPlace();
  let address1 = "";
  let postcode = "";

  // Get each component of the address from the place details,
  // and then fill-in the corresponding field on the form.
  // place.address_components are google.maps.GeocoderAddressComponent objects
  // which are documented at http://goo.gle/3l5i5Mr
  for (const component of place.address_components as google.maps.GeocoderAddressComponent[]) {
    // @ts-ignore remove once typings fixed
    const componentType = component.types[0];

    switch (componentType) {
      case "street_number": {
        address1 = `${component.long_name} ${address1}`;
        break;
      }

      case "route": {
        address1 += component.short_name;
        break;
      }

      case "postal_code": {
        postcode = `${component.long_name}${postcode}`;
        break;
      }

      case "postal_code_suffix": {
        postcode = `${postcode}-${component.long_name}`;
        break;
      }

      case "locality":
        (document.querySelector("#locality") as HTMLInputElement).value =
          component.long_name;
        break;

      case "administrative_area_level_1": {
        (document.querySelector("#state") as HTMLInputElement).value =
          component.short_name;
        break;
      }

      case "country":
        (document.querySelector("#country") as HTMLInputElement).value =
          component.long_name;
        break;
    }
  }

  address1Field.value = address1;
  postalField.value = postcode;

  // After filling the form with address components from the Autocomplete
  // prediction, set cursor focus on the second address line to encourage
  // entry of subpremise information such as apartment, unit, or floor number.
  address2Field.focus();
}
Note: Read the guide on using TypeScript and Google Maps. JavaScript
function fillInAddress() {
  // Get the place details from the autocomplete object.
  const place = autocomplete.getPlace();
  let address1 = "";
  let postcode = "";

  // Get each component of the address from the place details,
  // and then fill-in the corresponding field on the form.
  // place.address_components are google.maps.GeocoderAddressComponent objects
  // which are documented at http://goo.gle/3l5i5Mr
  for (const component of place.address_components) {
    // @ts-ignore remove once typings fixed
    const componentType = component.types[0];

    switch (componentType) {
      case "street_number": {
        address1 = `${component.long_name} ${address1}`;
        break;
      }

      case "route": {
        address1 += component.short_name;
        break;
      }

      case "postal_code": {
        postcode = `${component.long_name}${postcode}`;
        break;
      }

      case "postal_code_suffix": {
        postcode = `${postcode}-${component.long_name}`;
        break;
      }
      case "locality":
        document.querySelector("#locality").value = component.long_name;
        break;
      case "administrative_area_level_1": {
        document.querySelector("#state").value = component.short_name;
        break;
      }
      case "country":
        document.querySelector("#country").value = component.long_name;
        break;
    }
  }

  address1Field.value = address1;
  postalField.value = postcode;
  // After filling the form with address components from the Autocomplete
  // prediction, set cursor focus on the second address line to encourage
  // entry of subpremise information such as apartment, unit, or floor number.
  address2Field.focus();
}

window.initAutocomplete = initAutocomplete;

View example

The street_number address component may not be present in Place Details responses for place IDs in some autocomplete predictions. This typically happens when the address cannot be interpolated for a place. In these cases, the prediction's types array will contain "route". For autocomplete predictions with a number in the description (input query is matched), the Place Details response for the place ID contains the street number only if the types array for the prediction contains at least one of: Customize placeholder text

By default, the text field created by the autocomplete service contains standard placeholder text. To modify the text, set the placeholder attribute on the input element:

<input id="searchTextField" type="text" size="50" placeholder="Anything you want!">

Note: The default placeholder text is localized automatically. If you specify your own placeholder value, you must handle the localization of that value in your application. For information on how the Google Maps JavaScript API chooses the language to use, read the documentation on localization.

See Styling the Autocomplete and SearchBox widgets to customize the widget appearance.

Add a SearchBox widget Important: Using this widget requires enabling the Places API (Legacy) on your project. The Places (New) service offers an equivalent widget which is available in preview. By default, when a user selects a place, SearchBox returns all of the available data fields for the selected place, and you will be billed accordingly. There is no way to constrain SearchBox requests to only return specific fields. To keep from requesting (and paying for) data that you don't need, use the Autocomplete widget instead.

The SearchBox allows users to perform a text-based geographic search, such as 'pizza in New York' or 'shoe stores near robson street'. You can attach the SearchBox to a text field and, as text is entered, the service will return predictions in the form of a drop-down pick list.

SearchBox supplies an extended list of predictions, which can include places (as defined by the Places API) plus suggested search terms. For example, if the user enters 'pizza in new', the pick list may include the phrase 'pizza in New York, NY' as well as the names of various pizza outlets. When a user selects a place from the list, information about that place is returned to the SearchBox object, and can be retrieved by your application.

Note: When you display predictions from the Google Places search box, you must include the 'powered by Google' logo. This logo is included in the results list by default, for your convenience.

The SearchBox constructor takes two arguments:

The following code uses the bounds parameter to bias the results towards places within a particular geographic area, specified using laitude/longitude coordinates.

var defaultBounds = new google.maps.LatLngBounds(
  new google.maps.LatLng(-33.8902, 151.1759),
  new google.maps.LatLng(-33.8474, 151.2631));

var input = document.getElementById('searchTextField');

var searchBox = new google.maps.places.SearchBox(input, {
  bounds: defaultBounds
});
Change the search area for SearchBox

To change the search area for an existing SearchBox, call setBounds() on the SearchBox object and pass the relevant LatLngBounds object.

View example

Getting place information

When the user selects an item from the predictions attached to the search box, the service fires a places_changed event. You can call getPlaces() on the SearchBox object, to retrieve an array containing several predictions, each of which is a PlaceResult object.

For more information about the PlaceResult object, refer to the documentation on place detail results.

TypeScript
// Listen for the event fired when the user selects a prediction and retrieve
// more details for that place.
searchBox.addListener("places_changed", () => {
  const places = searchBox.getPlaces();

  if (places.length == 0) {
    return;
  }

  // Clear out the old markers.
  markers.forEach((marker) => {
    marker.setMap(null);
  });
  markers = [];

  // For each place, get the icon, name and location.
  const bounds = new google.maps.LatLngBounds();

  places.forEach((place) => {
    if (!place.geometry || !place.geometry.location) {
      console.log("Returned place contains no geometry");
      return;
    }

    const icon = {
      url: place.icon as string,
      size: new google.maps.Size(71, 71),
      origin: new google.maps.Point(0, 0),
      anchor: new google.maps.Point(17, 34),
      scaledSize: new google.maps.Size(25, 25),
    };

    // Create a marker for each place.
    markers.push(
      new google.maps.Marker({
        map,
        icon,
        title: place.name,
        position: place.geometry.location,
      })
    );

    if (place.geometry.viewport) {
      // Only geocodes have viewport.
      bounds.union(place.geometry.viewport);
    } else {
      bounds.extend(place.geometry.location);
    }
  });
  map.fitBounds(bounds);
});
Note: Read the guide on using TypeScript and Google Maps. JavaScript
// Listen for the event fired when the user selects a prediction and retrieve
// more details for that place.
searchBox.addListener("places_changed", () => {
  const places = searchBox.getPlaces();

  if (places.length == 0) {
    return;
  }

  // Clear out the old markers.
  markers.forEach((marker) => {
    marker.setMap(null);
  });
  markers = [];

  // For each place, get the icon, name and location.
  const bounds = new google.maps.LatLngBounds();

  places.forEach((place) => {
    if (!place.geometry || !place.geometry.location) {
      console.log("Returned place contains no geometry");
      return;
    }

    const icon = {
      url: place.icon,
      size: new google.maps.Size(71, 71),
      origin: new google.maps.Point(0, 0),
      anchor: new google.maps.Point(17, 34),
      scaledSize: new google.maps.Size(25, 25),
    };

    // Create a marker for each place.
    markers.push(
      new google.maps.Marker({
        map,
        icon,
        title: place.name,
        position: place.geometry.location,
      }),
    );
    if (place.geometry.viewport) {
      // Only geocodes have viewport.
      bounds.union(place.geometry.viewport);
    } else {
      bounds.extend(place.geometry.location);
    }
  });
  map.fitBounds(bounds);
});

View example

See Styling the Autocomplete and SearchBox widgets to customize the widget appearance.

Programmatically retrieving Place Autocomplete Service predictions

To retrieve predictions programmatically, use the AutocompleteService class. AutocompleteService does not add any UI controls. Instead, it returns an array of prediction objects, each containing the text of the prediction, reference information, and details of how the result matches the user input. This is useful if you want more control over the user interface than is offered by the Autocomplete and SearchBox described above.

AutocompleteService exposes the following methods:

Both of the above methods return an array of prediction objects of the following form:

The example below executes a query prediction request for the phrase 'pizza near' and displays the result in a list.

TypeScript
// This example retrieves autocomplete predictions programmatically from the
// autocomplete service, and displays them as an HTML list.
// This example requires the Places library. Include the libraries=places
// parameter when you first load the API. For example:
// <script src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&libraries=places">
function initService(): void {
  const displaySuggestions = function (
    predictions: google.maps.places.QueryAutocompletePrediction[] | null,
    status: google.maps.places.PlacesServiceStatus
  ) {
    if (status != google.maps.places.PlacesServiceStatus.OK || !predictions) {
      alert(status);
      return;
    }

    predictions.forEach((prediction) => {
      const li = document.createElement("li");

      li.appendChild(document.createTextNode(prediction.description));
      (document.getElementById("results") as HTMLUListElement).appendChild(li);
    });
  };

  const service = new google.maps.places.AutocompleteService();

  service.getQueryPredictions({ input: "pizza near Syd" }, displaySuggestions);
}

declare global {
  interface Window {
    initService: () => void;
  }
}
window.initService = initService;
Note: Read the guide on using TypeScript and Google Maps. JavaScript
// This example retrieves autocomplete predictions programmatically from the
// autocomplete service, and displays them as an HTML list.
// This example requires the Places library. Include the libraries=places
// parameter when you first load the API. For example:
// <script src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY&libraries=places">
function initService() {
  const displaySuggestions = function (predictions, status) {
    if (status != google.maps.places.PlacesServiceStatus.OK || !predictions) {
      alert(status);
      return;
    }

    predictions.forEach((prediction) => {
      const li = document.createElement("li");

      li.appendChild(document.createTextNode(prediction.description));
      document.getElementById("results").appendChild(li);
    });
  };

  const service = new google.maps.places.AutocompleteService();

  service.getQueryPredictions({ input: "pizza near Syd" }, displaySuggestions);
}

window.initService = initService;
Note: The JavaScript is compiled from the TypeScript snippet. CSS
 HTML 
<html>
  <head>
    <title>Retrieving Autocomplete Predictions</title>

    <link rel="stylesheet" type="text/css" href="./style.css" />
    <script type="module" src="./index.js"></script>
  </head>
  <body>
    <p>Query suggestions for 'pizza near Syd':</p>
    <ul id="results"></ul>
    <!-- Replace Powered By Google image src with self hosted image. https://developers.google.com/maps/documentation/places/web-service/policies#other_attribution_requirements -->
    <img
      class="powered-by-google"
      src="https://storage.googleapis.com/geo-devrel-public-buckets/powered_by_google_on_white.png"
      alt="Powered by Google"
    />

    <!-- 
      The `defer` attribute causes the script to execute after the full HTML
      document has been parsed. For non-blocking uses, avoiding race conditions,
      and consistent behavior across browsers, consider loading using Promises. See
      https://developers.google.com/maps/documentation/javascript/load-maps-js-api
      for more information.
      -->
    <script
      src="https://maps.googleapis.com/maps/api/js?key=AIzaSyB41DRUbKWJHPxaFjMAwdrzWzbVKartNGg&callback=initService&libraries=places&v=weekly"
      defer
    ></script>
  </body>
</html>
Try Sample

View example

Session tokens Tip: If your app is using the Autocomplete Widget you don't need to implement sessions, as the widget handles sessions automatically in the background.

AutocompleteService.getPlacePredictions() can use session tokens (if implemented) to group together autocomplete requests for billing purposes. Session tokens group the query and selection phases of a user autocomplete search into a discrete session for billing purposes. The session begins when the user starts typing a query, and concludes when they select a place. Each session can have multiple queries, followed by one place selection. Once a session has concluded, the token is no longer valid. Your app must generate a fresh token for each session. We recommend using session tokens for all autocomplete sessions. If the sessionToken parameter is omitted, or if you reuse a session token, the session is charged as if no session token was provided (each request is billed separately).

You can use the same session token to make a single Place Details request on the place that results from a call to AutocompleteService.getPlacePredictions(). In this case, the autocomplete request is combined with the Place Details request, and the call is charged as a regular Place Details request. There is no charge for the autocomplete request.

Be sure to pass a unique session token for each new session. Using the same token for more than one Autocomplete session will invalidate those Autocomplete sessions, and all Autocomplete request in the invalid sessions will be charged individually using Autocomplete Per Request SKU. Read more about session tokens.

The following example shows creating a session token, then passing it in an AutocompleteService (the displaySuggestions() function has been omitted for brevity):

// Create a new session token.
var sessionToken = new google.maps.places.AutocompleteSessionToken();

// Pass the token to the autocomplete service.
var autocompleteService = new google.maps.places.AutocompleteService();
autocompleteService.getPlacePredictions({
  input: 'pizza near Syd',
  sessionToken: sessionToken
},
displaySuggestions);

Be sure to pass a unique session token for each new session. Using the same token for more than one session will result in each request being billed individually.

Read more about session tokens.

Styling the Autocomplete and SearchBox widgets

By default, the UI elements provided by Autocomplete and SearchBox are styled for inclusion on a Google map. You may want to adjust the styling to suit your own site. The following CSS classes are available. All classes listed below apply to both the Autocomplete and the SearchBox widgets.

CSS classes for Autocomplete and SearchBox widgets CSS class Description pac-container The visual element containing the list of predictions returned by the Place Autocomplete service. This list appears as a drop-down list below the Autocomplete or SearchBox widget. pac-icon The icon displayed to the left of each item in the list of predictions. pac-item An item in the list of predictions supplied by the Autocomplete or SearchBox widget. pac-item:hover The item when the user hovers their mouse pointer over it. pac-item-selected The item when the user selects it using the keyboard. Note: Selected items will be a member of this class and of the pac-item class. pac-item-query A span inside a pac-item that is the main part of the prediction. For geographic locations, this contains a place name, like 'Sydney', or a street name and number, like '10 King Street'. For text-based searches such as 'pizza in New York', it contains the full text of the query. By default, the pac-item-query is colored black. If there is any additional text in the pac-item, it is outside pac-item-query and inherits its styling from pac-item. It is colored gray by default. The additional text is typically an address. pac-matched The part of the returned prediction that matches the user's input. By default, this matched text is highlighted in bold text. Note that the matched text may be anywhere within pac-item. It is not necessarily part of pac-item-query, and it could be partly within pac-item-query as well as partly in the remaining text in pac-item. Place Autocomplete (Legacy) optimization

This section describes best practices to help you make the most of the Place Autocomplete (Legacy) service.

Here are some general guidelines:

Cost optimization best practices Basic cost optimization

To optimize the cost of using the Place Autocomplete (Legacy) service, use field masks in Place Details (Legacy) and Place Autocomplete (Legacy) widgets to return only the place data fields you need.

Advanced cost optimization

Consider programmatic implementation of Place Autocomplete (Legacy) in order to access Per Request pricing and request Geocoding API results about the selected place instead of Place Details (Legacy). Per Request pricing paired with Geocoding API is more cost-effective than Per Session (session-based) pricing if both of the following conditions are met:

For help selecting the Place Autocomplete (Legacy) implementation that fits your needs, select the tab that corresponds to your answer to the following question.

Does your application require any information other than the address and latitude/longitude of the selected prediction?

Yes, needs more details

Use session-based Place Autocomplete (Legacy) with Place Details (Legacy).
Since your application requires Place Details (Legacy) such as the place name, business status, or opening hours, your implementation of Place Autocomplete (Legacy) should use a session token (programmatically or built into the JavaScript, Android, or iOS widgets). per session plus applicable Places Data SKUs depending on which place data fields you request.1

Widget implementation
Session management is automatically built into the JavaScript, Android, or iOS widgets. This includes both the Place Autocomplete (Legacy) requests and the Place Details (Legacy) request on the selected prediction. Be sure to specify the fields parameter in order to ensure you are only requesting the place data fields you need.

Programmatic implementation
Use a session token with your Place Autocomplete (Legacy) requests. When requesting Place Details (Legacy) about the selected prediction, include the following parameters:

  1. The place ID from the Place Autocomplete (Legacy) response
  2. The session token used in the Place Autocomplete (Legacy) request
  3. The fields parameter specifying the place data fields you need
No, needs only address and location

Geocoding API could be a more cost-effective option than Place Details (Legacy) for your application, depending on the performance of your Place Autocomplete (Legacy) usage. Every application's Place Autocomplete (Legacy) efficiency varies depending on what users are entering, where the application is being used, and whether performance optimization best practices have been implemented.

In order to answer the following question, analyze how many characters a user types on average before selecting a Place Autocomplete (Legacy) prediction in your application.

Do your users select a Place Autocomplete (Legacy) prediction in four or fewer requests, on average?

Yes

Implement Place Autocomplete (Legacy) programmatically without session tokens and call Geocoding API on the selected place prediction.
Geocoding API delivers addresses and latitude/longitude coordinates. Making four Place Autocomplete (Legacy) - Per Request requests plus a Geocoding API call about the selected place prediction is less than the Per Session Place Autocomplete (Legacy) cost per session.1

Consider employing performance best practices to help your users get the prediction they're looking for in even fewer characters.

No

Use session-based Place Autocomplete (Legacy) with Place Details (Legacy).
Since the average number of requests you expect to make before a user selects a Place Autocomplete (Legacy) prediction exceeds the cost of Per Session pricing, your implementation of Place Autocomplete (Legacy) should use a session token for both the Place Autocomplete (Legacy) requests and the associated Place Details (Legacy) request per session.1

Widget implementation
Session management is automatically built into the JavaScript, Android, or iOS widgets. This includes both the Place Autocomplete (Legacy) requests and the Place Details (Legacy) request on the selected prediction. Be sure to specify the fields parameter in order to ensure you are only requesting Basic Data fields.

Programmatic implementation
Use a session token with your Place Autocomplete (Legacy) requests. When requesting Place Details (Legacy) about the selected prediction, include the following parameters:

  1. The place ID from the Place Autocomplete (Legacy) response
  2. The session token used in the Place Autocomplete (Legacy) request
  3. The fields parameter specifying Basic Data fields such as address and geometry

Consider delaying Place Autocomplete (Legacy) requests
You can employ strategies such as delaying a Place Autocomplete (Legacy) request until the user has typed in the first three or four characters so that your application makes fewer requests. For example, making Place Autocomplete (Legacy) requests for each character after the user has typed the third character means that if the user types seven characters then selects a prediction for which you make one Geocoding API request, the total cost would be for 4 Place Autocomplete (Legacy) Per Request + Geocoding.1

If delaying requests can get your average programmatic request below four, you can follow the guidance for performant Place Autocomplete (Legacy) with Geocoding API implementation. Note that delaying requests can be perceived as latency by the user who might be expecting to see predictions with every new keystroke.

Consider employing performance best practices to help your users get the prediction they're looking for in fewer characters.

Performance best practices

The following guidelines describe ways to optimize Place Autocomplete (Legacy) performance:

Usage limits Quotas

For quota and pricing information, see the Usage and Billing documentation for the Places API.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-07-09 UTC.

[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-07-09 UTC."],[],[]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4