Stay organized with collections Save and categorize content based on your preferences.
Estimated module length: 45 minutes Learning objectivesThis module assumes you are familiar with the concepts covered in the following modules:
Imagine you're developing a food-recommendation application, where users input their favorite meals, and the app suggests similar meals that they might like. You want to develop a machine learning (ML) model that can predict food similarity, so your app can make high quality recommendations ("Since you like pancakes, we recommend crepes").
To train your model, you curate a dataset of 5,000 popular meal items, including borscht, hot dog, salad, pizza, and shawarma.
Figure 1. Sampling of meal items included in the food dataset.You create a meal
feature that contains a one-hot encoded representation of each of the meal items in the dataset. Encoding refers to the process of choosing an initial numerical representation of data to train the model on.
Reviewing these one-hot encodings, you notice several problems with this representation of the data.
In this module, you'll learn how to create embeddings, lower-dimensional representations of sparse data, that address these issues.
Key terms:Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-07-02 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-07-02 UTC."],[[["This module explains how to create embeddings, which are lower-dimensional representations of sparse data that address the problems of large input vectors and lack of meaningful relations between vectors in one-hot encoding."],["One-hot encoding creates large input vectors, leading to a huge number of weights in a neural network, requiring more data, computation, and memory."],["One-hot encoding vectors lack meaningful relationships, failing to capture semantic similarities between items, like the example of hot dogs and shawarmas being more similar than hot dogs and salads."],["Embeddings offer a solution by providing dense vector representations that capture semantic relationships and reduce the dimensionality of data, improving efficiency and performance in machine learning models."],["This module assumes familiarity with introductory machine learning concepts like linear regression, categorical data, and neural networks."]]],[]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4