A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://developers.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-centroids below:

The ML.CENTROIDS function | BigQuery

Stay organized with collections Save and categorize content based on your preferences.

The ML.CENTROIDS function

This document describes the ML.CENTROIDS function, which lets you return information about the centroids in a k-means model.

Syntax
ML.CENTROIDS(
  MODEL `PROJECT_ID.DATASET.MODEL`,
  STRUCT([, STANDARDIZE AS standardize]))
Arguments

ML.CENTROIDS takes the following arguments:

Output

ML.CENTROIDS returns the following columns:

The output contains one row per feature per centroid.

Examples

The following examples show how to use ML.CENTROIDS with and without the standardize argument.

Without standardization

Numerical features

The following example retrieves centroid information from the model mydataset.my_kmeans_model in your default project. This model only contains numerical features.

SELECT
  *
FROM
  ML.CENTROIDS(MODEL `mydataset.my_kmeans_model`)

This query returns results like the following:

+-------------+-------------------+----------------------+---------------------+
| centroid_id | feature           | numerical_value      | categorical_value   |
+-------------+-------------------+----------------------+---------------------+
|           3 | x_coordinate      |            3095929.0 |                  [] |
|           3 | y_coordinate      | 1.0089726307692308E7 |                  [] |
|           2 | x_coordinate      |        3117072.65625 |                  [] |
|           2 | y_coordinate      | 1.0083220745833334E7 |                  [] |
|           1 | x_coordinate      |    3259947.096227731 |                  [] |
|           1 | y_coordinate      | 1.0105690227895036E7 |                  [] |
|           4 | x_coordinate      |   3109887.9056603773 |                  [] |
|           4 | y_coordinate      | 1.0057112358490566E7 |                  [] |
+-------------+-------------------+----------------------+---------------------+

Categorical features

The following example retrieves centroid information from the model mydataset.my_kmeans_model in your default project. This model contains categorical features.

SELECT
  *
FROM
  ML.CENTROIDS(MODEL `mydataset.my_kmeans_model`)
ORDER BY
  centroid_id;

This query returns results like the following:

+-------------+-------------------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| centroid_id | feature           |numerical_value| categorical_value                                                                                                                                                                                                                                              |
+-------------+-------------------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|           1 | department        |          NULL | [{"category":"Medieval Art","feature_value":"1.0"}]                                                                                                                                                                                                            |
|           1 | medium            |          NULL | [{"category":"Iron","feature_value":"0.21602160216021601"},{"category":"Glass, ceramic","feature_value":"0.3933393339333933"},{"category":"Copper alloy","feature_value":"0.39063906390639064"}]                                                               |
|           2 | medium            |          NULL | [{"category":"Wood, gesso, paint","feature_value":"0.15"},{"category":"Carnelian","feature_value":"0.2692307692307692"},{"category":"Papyrus, ink","feature_value":"0.2653846153846154"},{"category":"Steatite, glazed","feature_value":"0.3153846153846154"}] |
|           2 | department        |          NULL | [{"category":"Egyptian Art","feature_value":"1.0"}]                                                                                                                                                                                                            |
|           3 | medium            |          NULL | [{"category":"Faience","feature_value":"1.0"}]                                                                                                                                                                                                                 |
|           3 | department        |          NULL | [{"category":"Egyptian Art","feature_value":"1.0"}]                                                                                                                                                                                                            |
|           4 | medium            |          NULL | [{"category":"Steatite","feature_value":"1.0"}]                                                                                                                                                                                                                |
|           4 | department        |          NULL | [{"category":"Egyptian Art","feature_value":"1.0"}]                                                                                                                                                                                                            |
|           5 | medium            |          NULL | [{"category":"Red quartzite","feature_value":"0.20316027088036118"},{"category":"Bronze or copper alloy","feature_value":"0.3476297968397291"},{"category":"Gold","feature_value":"0.4492099322799097"}]                                                       |
|           5 | department        |          NULL | [{"category":"Egyptian Art","feature_value":"1.0"}]                                                                                                                                                                                                            |
+-------------+-------------------+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

Numerical and categorical features

The following are the results from the same query against a k-means model with both numerical and categorical features.

+-------------+--------------------+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| centroid_id |      feature       |  numerical_value  | categorical_value                                                                                                                                                                                                                                                                 |
+-------------+--------------------+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|           1 | start_station_name |              NULL | [{"category":"Toomey Rd @ South Lamar","value":"0.5714285714285714"},{"category":"State Capitol @ 14th & Colorado","value":"0.42857142857142855"}]                                                                                                                                |
|           1 | duration_minutes   | 9.142857142857142 | []                                                                                                                                                                                                                                                                                |
|           2 | duration_minutes   |               9.0 | []                                                                                                                                                                                                                                                                                |
|           2 | start_station_name |              NULL | [{"category":"Rainey @ River St","value":"0.14285714285714285"},{"category":"11th & San Jacinto","value":"0.42857142857142855"},{"category":"ACC - West & 12th Street","value":"0.14285714285714285"},{"category":"East 11th St. at Victory Grill","value":"0.2857142857142857"}] |
+-------------+--------------------+-------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
With standardization

The following example retrieves centroid information from the model mydataset.my_kmeans_model in your default project. The query in this example assumes that all features have a mean of 0 and a standard deviation of 1.

SELECT
  *
FROM
  ML.CENTROIDS(MODEL `mydataset.my_kmeans_model`,
    STRUCT(TRUE AS standardize))
What's next

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-08-07 UTC.

[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-07 UTC."],[[["The `ML.CENTROIDS` function in BigQuery ML retrieves information about centroids in a k-means model, enabling users to analyze feature values associated with each centroid."],["The function's syntax includes specifying the model's project ID, dataset, and name, along with an optional `standardize` argument, that if set to TRUE, adjusts the centroid features to assume a mean of 0 and a standard deviation of 1."],["`ML.CENTROIDS` returns data for each centroid, including a `centroid_id`, the `feature` name, and the corresponding `numerical_value` or `categorical_value`, or `geography_value` if applicable, or a null value, if they are not applicable."],["The output can be customized by using or not the standardization argument, and the output will be shown for all numerical features, categorical features, or a combination of the two, depending on the model."],["The output also contains a `trial_id` if you ran hyperparameter tuning when creating the model."]]],[]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4