A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://developers.google.com/bigquery/docs/loading-data-cloud-storage-json below:

Loading JSON data from Cloud Storage | BigQuery

Skip to main content

Stay organized with collections Save and categorize content based on your preferences.

Loading JSON data from Cloud Storage

You can load newline-delimited JSON (ndJSON) data from Cloud Storage into a new table or partition, or append to or overwrite an existing table or partition. When your data is loaded into BigQuery, it is converted into columnar format for Capacitor (BigQuery's storage format).

When you load data from Cloud Storage into a BigQuery table, the dataset that contains the table must be in the same regional or multi- regional location as the Cloud Storage bucket.

The ndJSON format is the same format as the JSON Lines format.

Limitations

You are subject to the following limitations when you load data into BigQuery from a Cloud Storage bucket:

When you load JSON files into BigQuery, note the following:

Before you begin

Grant Identity and Access Management (IAM) roles that give users the necessary permissions to perform each task in this document, and create a dataset to store your data.

Required permissions

To load data into BigQuery, you need IAM permissions to run a load job and load data into BigQuery tables and partitions. If you are loading data from Cloud Storage, you also need IAM permissions to access the bucket that contains your data.

Permissions to load data into BigQuery

To load data into a new BigQuery table or partition or to append or overwrite an existing table or partition, you need the following IAM permissions:

Each of the following predefined IAM roles includes the permissions that you need in order to load data into a BigQuery table or partition:

Additionally, if you have the bigquery.datasets.create permission, you can create and update tables using a load job in the datasets that you create.

For more information on IAM roles and permissions in BigQuery, see Predefined roles and permissions.

Permissions to load data from Cloud Storage

To get the permissions that you need to load data from a Cloud Storage bucket, ask your administrator to grant you the Storage Admin (roles/storage.admin) IAM role on the bucket. For more information about granting roles, see Manage access to projects, folders, and organizations.

This predefined role contains the permissions required to load data from a Cloud Storage bucket. To see the exact permissions that are required, expand the Required permissions section:

Required permissions

The following permissions are required to load data from a Cloud Storage bucket:

You might also be able to get these permissions with custom roles or other predefined roles.

Create a dataset

Create a BigQuery dataset to store your data.

JSON compression

You can use the gzip utility to compress JSON files. Note that gzip performs full file compression, unlike the file content compression performed by compression codecs for other file formats, such as Avro. Using gzip to compress your JSON files might have a performance impact; for more information about the trade-offs, see Loading compressed and uncompressed data.

Loading JSON data into a new table

To load JSON data from Cloud Storage into a new BigQuery table:

Console
  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project, and then select a dataset.
  3. In the Dataset info section, click add_box Create table.
  4. In the Create table panel, specify the following details:
    1. In the Source section, select Google Cloud Storage in the Create table from list. Then, do the following:
      1. Select a file from the Cloud Storage bucket, or enter the Cloud Storage URI. You cannot include multiple URIs in the Google Cloud console, but wildcards are supported. The Cloud Storage bucket must be in the same location as the dataset that contains the table you want to create, append, or overwrite.
      2. For File format, select JSONL (Newline delimited JSON).
    2. In the Destination section, specify the following details:
      1. For Dataset, select the dataset in which you want to create the table.
      2. In the Table field, enter the name of the table that you want to create.
      3. Verify that the Table type field is set to Native table.
    3. In the Schema section, enter the schema definition. To enable the auto detection of a schema, select Auto detect. You can enter schema information manually by using one of the following methods:
      • Option 1: Click Edit as text and paste the schema in the form of a JSON array. When you use a JSON array, you generate the schema using the same process as creating a JSON schema file. You can view the schema of an existing table in JSON format by entering the following command:
            bq show --format=prettyjson dataset.table
            
      • Option 2: Click add_box Add field and enter the table schema. Specify each field's Name, Type, and Mode.
    4. Optional: Specify Partition and cluster settings. For more information, see Creating partitioned tables and Creating and using clustered tables.
    5. Click Advanced options and do the following:
      • For Write preference, leave Write if empty selected. This option creates a new table and loads your data into it.
      • For Number of errors allowed, accept the default value of 0 or enter the maximum number of rows containing errors that can be ignored. If the number of rows with errors exceeds this value, the job will result in an invalid message and fail. This option applies only to CSV and JSON files.
      • For Time zone, enter the default time zone that will apply when parsing timestamp values that have no specific time zone. Check here for more valid time zone names. If this value is not present, the timestamp values without specific time zone is parsed using default time zone UTC. (Preview).
      • For Date Format, enter the format elements that define how the DATE values are formatted in the input files. This field expects SQL styles format (for example, MM/DD/YYYY). If this value is present, this format is the only compatible DATE format. Schema autodetection will also decide DATE column type based on this format instead of the existing format. If this value is not present, the DATE field is parsed with the default formats. (Preview).
      • For Datetime Format, enter the format elements that define how the DATETIME values are formatted in the input files. This field expects SQL styles format (for example, MM/DD/YYYY HH24:MI:SS.FF3). If this value is present, this format is the only compatible DATETIME format. Schema autodetection will also decide DATETIME column type based on this format instead of the existing format. If this value is not present, the DATETIME field is parsed with the default formats. (Preview).
      • For Time Format, enter the format elements that define how the TIME values are formatted in the input files. This field expects SQL styles format (for example, HH24:MI:SS.FF3). If this value is present, this format is the only compatible TIME format. Schema autodetection will also decide TIME column type based on this format instead of the existing format. If this value is not present, the TIME field is parsed with the default formats. (Preview).
      • For Timestamp Format, enter the format elements that define how the TIMESTAMP values are formatted in the input files. This field expects SQL styles format (for example, MM/DD/YYYY HH24:MI:SS.FF3). If this value is present, this format is the only compatible TIMESTAMP format. Schema autodetection will also decide TIMESTAMP column type based on this format instead of the existing format. If this value is not present, the TIMESTAMP field is parsed with the default formats. (Preview).
      • If you want to ignore values in a row that are not present in the table's schema, then select Unknown values.
      • For Encryption, click Customer-managed key to use a Cloud Key Management Service key. If you leave the Google-managed key setting, BigQuery encrypts the data at rest.
    6. Click Create table.
Note: When you load data into an empty table by using the Google Cloud console, you cannot add a label, description, table expiration, or partition expiration.

After the table is created, you can update the table's expiration, description, and labels, but you cannot add a partition expiration after a table is created using the Google Cloud console. For more information, see Managing tables.

SQL

Use the LOAD DATA DDL statement. The following example loads a JSON file into the new table mytable:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    LOAD DATA OVERWRITE mydataset.mytable
    (x INT64,y STRING)
    FROM FILES (
      format = 'JSON',
      uris = ['gs://bucket/path/file.json']);
  3. Click play_circle Run.

For more information about how to run queries, see Run an interactive query.

bq

Use the bq load command, specify NEWLINE_DELIMITED_JSON using the --source_format flag, and include a Cloud Storage URI. You can include a single URI, a comma-separated list of URIs, or a URI containing a wildcard. Supply the schema inline, in a schema definition file, or use schema auto-detect.

(Optional) Supply the --location flag and set the value to your location.

Other optional flags include:

To load JSON data into BigQuery, enter the following command:

bq --location=LOCATION load \
--source_format=FORMAT \
DATASET.TABLE \
PATH_TO_SOURCE \
SCHEMA

Replace the following:

Examples:

The following command loads data from gs://mybucket/mydata.json into a table named mytable in mydataset. The schema is defined in a local schema file named myschema.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema

The following command loads data from gs://mybucket/mydata.json into a new ingestion-time partitioned table named mytable in mydataset. The schema is defined in a local schema file named myschema.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    --time_partitioning_type=DAY \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema

The following command loads data from gs://mybucket/mydata.json into a partitioned table named mytable in mydataset. The table is partitioned on the mytimestamp column. The schema is defined in a local schema file named myschema.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    --time_partitioning_field mytimestamp \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema

The following command loads data from gs://mybucket/mydata.json into a table named mytable in mydataset. The schema is auto detected.

    bq load \
    --autodetect \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json

The following command loads data from gs://mybucket/mydata.json into a table named mytable in mydataset. The schema is defined inline in the format FIELD:DATA_TYPE, FIELD:DATA_TYPE.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    qtr:STRING,sales:FLOAT,year:STRING
Note: When you specify the schema using the bq tool, you cannot include a RECORD (STRUCT) type, you cannot include a field description, and you cannot specify the field mode. All field modes default to NULLABLE. To include field descriptions, modes, and RECORD types, supply a JSON schema file instead.

The following command loads data from multiple files in gs://mybucket/ into a table named mytable in mydataset. The Cloud Storage URI uses a wildcard. The schema is auto detected.

    bq load \
    --autodetect \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata*.json

The following command loads data from multiple files in gs://mybucket/ into a table named mytable in mydataset. The command includes a comma- separated list of Cloud Storage URIs with wildcards. The schema is defined in a local schema file named myschema.

    bq load \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    "gs://mybucket/00/*.json","gs://mybucket/01/*.json" \
    ./myschema
API
  1. Create a load job that points to the source data in Cloud Storage.

  2. (Optional) Specify your location in the location property in the jobReference section of the job resource.

  3. The source URIs property must be fully qualified, in the format gs://BUCKET/OBJECT. Each URI can contain one '*' wildcard character.

  4. Specify the JSON data format by setting the sourceFormat property to NEWLINE_DELIMITED_JSON.

  5. To check the job status, call jobs.get(JOB_ID*), replacing JOB_ID with the ID of the job returned by the initial request.

API notes:

C#

Before trying this sample, follow the C# setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery C# API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Use the BigQueryClient.CreateLoadJob() method to start a load job from Cloud Storage. To use JSONL, create a CreateLoadJobOptions object and set its SourceFormat property to FileFormat.NewlineDelimitedJson. Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Use the LoadJobConfiguration.builder(tableId, sourceUri) method to start a load job from Cloud Storage. To use newline-delimited JSON, use the LoadJobConfiguration.setFormatOptions(FormatOptions.json()). Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Use the Client.load_table_from_uri() method to start a load job from Cloud Storage. To use JSONL, set the LoadJobConfig.source_format property to the string NEWLINE_DELIMITED_JSON and pass the job config as the job_config argument to the load_table_from_uri() method. Ruby

Before trying this sample, follow the Ruby setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Ruby API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Use the Dataset.load_job() method to start a load job from Cloud Storage. To use JSONL, set the format parameter to "json". Loading nested and repeated JSON data

BigQuery supports loading nested and repeated data from source formats that support object-based schemas, such as JSON, Avro, ORC, Parquet, Firestore, and Datastore.

One JSON object, including any nested or repeated fields, must appear on each line.

The following example shows sample nested or repeated data. This table contains information about people. It consists of the following fields:

The JSON data file would look like the following. Notice that the address field contains an array of values (indicated by [ ]).

{"id":"1","first_name":"John","last_name":"Doe","dob":"1968-01-22","addresses":[{"status":"current","address":"123 First Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456 Main Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]}
{"id":"2","first_name":"Jane","last_name":"Doe","dob":"1980-10-16","addresses":[{"status":"current","address":"789 Any Avenue","city":"New York","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321 Main Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}

The schema for this table would look like the following:

[
    {
        "name": "id",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "first_name",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "last_name",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "dob",
        "type": "DATE",
        "mode": "NULLABLE"
    },
    {
        "name": "addresses",
        "type": "RECORD",
        "mode": "REPEATED",
        "fields": [
            {
                "name": "status",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "address",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "city",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "state",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "zip",
                "type": "STRING",
                "mode": "NULLABLE"
            },
            {
                "name": "numberOfYears",
                "type": "STRING",
                "mode": "NULLABLE"
            }
        ]
    }
]

For information on specifying a nested and repeated schema, see Specifying nested and repeated fields.

Loading semi-structured JSON data

BigQuery supports loading semi-structured data, in which a field can take values of different types. The following example shows data similar to the preceding nested and repeated JSON data example, except that the address field can be a STRING, a STRUCT, or an ARRAY:

{"id":"1","first_name":"John","last_name":"Doe","dob":"1968-01-22","address":"123 First Avenue, Seattle WA 11111"}

{"id":"2","first_name":"Jane","last_name":"Doe","dob":"1980-10-16","address":{"status":"current","address":"789 Any Avenue","city":"New York","state":"NY","zip":"33333","numberOfYears":"2"}}

{"id":"3","first_name":"Bob","last_name":"Doe","dob":"1982-01-10","address":[{"status":"current","address":"789 Any Avenue","city":"New York","state":"NY","zip":"33333","numberOfYears":"2"}, "321 Main Street Hoboken NJ 44444"]}

You can load this data into BigQuery by using the following schema:

[
    {
        "name": "id",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "first_name",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "last_name",
        "type": "STRING",
        "mode": "NULLABLE"
    },
    {
        "name": "dob",
        "type": "DATE",
        "mode": "NULLABLE"
    },
    {
        "name": "address",
        "type": "JSON",
        "mode": "NULLABLE"
    }
]

The address field is loaded into a column with type JSON that allows it to hold the mixed types in the example. You can ingest data as JSON whether it contains mixed types or not. For example, you could specify JSON instead of STRING as the type for the first_name field. For more information, see Working with JSON data in GoogleSQL.

Appending to or overwriting a table with JSON data

You can load additional data into a table either from source files or by appending query results.

In the Google Cloud console, use the Write preference option to specify what action to take when you load data from a source file or from a query result.

You have the following options when you load additional data into a table:

Console option bq tool flag BigQuery API property Description Write if empty Not supported WRITE_EMPTY Writes the data only if the table is empty. Append to table --noreplace or --replace=false; if --[no]replace is unspecified, the default is append WRITE_APPEND (Default) Appends the data to the end of the table. Overwrite table --replace or --replace=true WRITE_TRUNCATE Erases all existing data in a table before writing the new data. This action also deletes the table schema, row level security, and removes any Cloud KMS key.

If you load data into an existing table, the load job can append the data or overwrite the table.

You can append or overwrite a table by using one of the following:

Note: This page does not cover appending or overwriting partitioned tables. For information on appending and overwriting partitioned tables, see: Appending to and overwriting partitioned table data. Console
  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project, and then select a dataset.
  3. In the Dataset info section, click add_box Create table.
  4. In the Create table panel, specify the following details:
    1. In the Source section, select Google Cloud Storage in the Create table from list. Then, do the following:
      1. Select a file from the Cloud Storage bucket, or enter the Cloud Storage URI. You cannot include multiple URIs in the Google Cloud console, but wildcards are supported. The Cloud Storage bucket must be in the same location as the dataset that contains the table you want to create, append, or overwrite.
      2. For File format, select JSONL (Newline delimited JSON).
    2. Note: It is possible to modify the table's schema when you append or overwrite it. For more information about supported schema changes during a load operation, see Modifying table schemas.
    3. In the Destination section, specify the following details:
      1. For Dataset, select the dataset in which you want to create the table.
      2. In the Table field, enter the name of the table that you want to create.
      3. Verify that the Table type field is set to Native table.
    4. In the Schema section, enter the schema definition. To enable the auto detection of a schema, select Auto detect. You can enter schema information manually by using one of the following methods:
      • Option 1: Click Edit as text and paste the schema in the form of a JSON array. When you use a JSON array, you generate the schema using the same process as creating a JSON schema file. You can view the schema of an existing table in JSON format by entering the following command:
            bq show --format=prettyjson dataset.table
            
      • Option 2: Click add_box Add field and enter the table schema. Specify each field's Name, Type, and Mode.
      • Note: It is possible to modify the table's schema when you append or overwrite it. For more information about supported schema changes during a load operation, see Modifying table schemas.
    5. Optional: Specify Partition and cluster settings. For more information, see Creating partitioned tables and Creating and using clustered tables. You cannot convert a table to a partitioned or clustered table by appending or overwriting it. The Google Cloud console does not support appending to or overwriting partitioned or clustered tables in a load job.
    6. Click Advanced options and do the following:
      • For Write preference, choose Append to table or Overwrite table.
      • For Number of errors allowed, accept the default value of 0 or enter the maximum number of rows containing errors that can be ignored. If the number of rows with errors exceeds this value, the job will result in an invalid message and fail. This option applies only to CSV and JSON files.
      • For Time zone, enter the default time zone that will apply when parsing timestamp values that have no specific time zone. Check here for more valid time zone names. If this value is not present, the timestamp values without specific time zone is parsed using default time zone UTC. (Preview).
      • For Date Format, enter the format elements that define how the DATE values are formatted in the input files. This field expects SQL styles format (for example, MM/DD/YYYY). If this value is present, this format is the only compatible DATE format. Schema autodetection will also decide DATE column type based on this format instead of the existing format. If this value is not present, the DATE field is parsed with the default formats. (Preview).
      • For Datetime Format, enter the format elements that define how the DATETIME values are formatted in the input files. This field expects SQL styles format (for example, MM/DD/YYYY HH24:MI:SS.FF3). If this value is present, this format is the only compatible DATETIME format. Schema autodetection will also decide DATETIME column type based on this format instead of the existing format. If this value is not present, the DATETIME field is parsed with the default formats. (Preview).
      • For Time Format, enter the format elements that define how the TIME values are formatted in the input files. This field expects SQL styles format (for example, HH24:MI:SS.FF3). If this value is present, this format is the only compatible TIME format. Schema autodetection will also decide TIME column type based on this format instead of the existing format. If this value is not present, the TIME field is parsed with the default formats. (Preview).
      • For Timestamp Format, enter the format elements that define how the TIMESTAMP values are formatted in the input files. This field expects SQL styles format (for example, MM/DD/YYYY HH24:MI:SS.FF3). If this value is present, this format is the only compatible TIMESTAMP format. Schema autodetection will also decide TIMESTAMP column type based on this format instead of the existing format. If this value is not present, the TIMESTAMP field is parsed with the default formats. (Preview).
      • If you want to ignore values in a row that are not present in the table's schema, then select Unknown values.
      • For Encryption, click Customer-managed key to use a Cloud Key Management Service key. If you leave the Google-managed key setting, BigQuery encrypts the data at rest.
    7. Click Create table.
SQL

Use the LOAD DATA DDL statement. The following example appends a JSON file to the table mytable:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    LOAD DATA INTO mydataset.mytable
    FROM FILES (
      format = 'JSON',
      uris = ['gs://bucket/path/file.json']);
  3. Click play_circle Run.

For more information about how to run queries, see Run an interactive query.

bq

Use the bq load command, specify NEWLINE_DELIMITED_JSON using the --source_format flag, and include a Cloud Storage URI. You can include a single URI, a comma-separated list of URIs, or a URI containing a wildcard.

Supply the schema inline, in a schema definition file, or use schema auto-detect.

Specify the --replace flag to overwrite the table. Use the --noreplace flag to append data to the table. If no flag is specified, the default is to append data.

It is possible to modify the table's schema when you append or overwrite it. For more information on supported schema changes during a load operation, see Modifying table schemas.

(Optional) Supply the --location flag and set the value to your location.

Other optional flags include:

bq --location=LOCATION load \
--[no]replace \
--source_format=FORMAT \
DATASET.TABLE \
PATH_TO_SOURCE \
SCHEMA

Replace the following:

Examples:

The following command loads data from gs://mybucket/mydata.json and overwrites a table named mytable in mydataset. The schema is defined using schema auto-detection.

    bq load \
    --autodetect \
    --replace \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json

The following command loads data from gs://mybucket/mydata.json and appends data to a table named mytable in mydataset. The schema is defined using a JSON schema file — myschema.

    bq load \
    --noreplace \
    --source_format=NEWLINE_DELIMITED_JSON \
    mydataset.mytable \
    gs://mybucket/mydata.json \
    ./myschema
API
  1. Create a load job that points to the source data in Cloud Storage.

  2. (Optional) Specify your location in the location property in the jobReference section of the job resource.

  3. The source URIs property must be fully-qualified, in the format gs://BUCKET/OBJECT. You can include multiple URIs as a comma-separated list. The wildcards are also supported.

  4. Specify the data format by setting the configuration.load.sourceFormat property to NEWLINE_DELIMITED_JSON.

  5. Specify the write preference by setting the configuration.load.writeDisposition property to WRITE_TRUNCATE or WRITE_APPEND.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Java Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Python

To replace the rows in an existing table, set the LoadJobConfig.write_disposition property to the string WRITE_TRUNCATE.

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Ruby

To replace the rows in an existing table, set the write parameter of Table.load_job() to "WRITE_TRUNCATE".

Before trying this sample, follow the Ruby setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Ruby API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Loading hive-partitioned JSON data

BigQuery supports loading hive partitioned JSON data stored on Cloud Storage and populates the hive partitioning columns as columns in the destination BigQuery managed table. For more information, see Loading externally partitioned data.

Details of loading JSON data

This section describes how BigQuery parses various data types when loading JSON data.

Data typesBoolean

. BigQuery can parse any of the following pairs for Boolean data: 1 or 0, true or false, t or f, yes or no, or y or n (all case insensitive). Schema

autodetection

automatically detects any of these except 0 and 1.

Bytes. Columns with BYTES types must be encoded as Base64.

Date. Columns with DATE types must be in the format YYYY-MM-DD.

Datetime. Columns with DATETIME types must be in the format YYYY-MM-DD HH:MM:SS[.SSSSSS].

Geography. Columns with GEOGRAPHY types must contain strings in one of the following formats:

If you use WKB, the value should be hex encoded.

The following list shows examples of valid data:

Before loading GEOGRAPHY data, also read Loading geospatial data.

Interval. Columns with INTERVAL types must be in ISO 8601 format PYMDTHMS, where:

You can indicate a negative value by prepending a dash (-).

The following list shows examples of valid data:

To load INTERVAL data, you must use the bq load command and use the --schema flag to specify a schema. You can't upload INTERVAL data by using the console.

Time. Columns with TIME types must be in the format HH:MM:SS[.SSSSSS].

Timestamp. BigQuery accepts various timestamp formats. The timestamp must include a date portion and a time portion.

For example, any of the following are valid timestamp values:

If you provide a schema, BigQuery also accepts Unix epoch time for timestamp values. However, schema autodetection doesn't detect this case, and treats the value as a numeric or string type instead.

Examples of Unix epoch timestamp values:

Array (repeated field). The value must be a JSON array or null. JSON null is converted to SQL NULL. The array itself cannot contain null values.

Schema auto-detection

This section describes the behavior of schema auto-detection when loading JSON files.

JSON nested and repeated fields

BigQuery infers nested and repeated fields in JSON files. If a field value is a JSON object, then BigQuery loads the column as a RECORD type. If a field value is an array, then BigQuery loads the column as a repeated column. For an example of JSON data with nested and repeated data, see Loading nested and repeated JSON data.

String conversion

If you enable schema auto-detection, then BigQuery converts strings into Boolean, numeric, or date/time types when possible. For example, using the following JSON data, schema auto-detection converts the id field to an INTEGER column:

{ "name":"Alice","id":"12"}
{ "name":"Bob","id":"34"}
{ "name":"Charles","id":"45"}
Encoding types

BigQuery expects JSON data to be UTF-8 encoded. If you have JSON files with other supported encoding types, you should explicitly specify the encoding by using the --encoding flag so that BigQuery converts the data to UTF-8.

BigQuery supports the following encoding types for JSON files:

JSON options

To change how BigQuery parses JSON data, specify additional options in the Google Cloud console, the bq command-line tool, the API, or the client libraries.

JSON option Console option bq tool flag BigQuery API property Description Number of bad records allowed Number of errors allowed --max_bad_records maxBadRecords (Java, Python) (Optional) The maximum number of bad records that BigQuery can ignore when running the job. If the number of bad records exceeds this value, an invalid error is returned in the job result. The default value is `0`, which requires that all records are valid. Unknown values Ignore unknown values --ignore_unknown_values ignoreUnknownValues (Java, Python) (Optional) Indicates whether BigQuery should allow extra values that are not represented in the table schema. If true, the extra values are ignored. If false, records with extra columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. The default value is false. The `sourceFormat` property determines what BigQuery treats as an extra value: CSV: trailing columns, JSON: named values that don't match any column names. Encoding None -E or --encoding encoding (Python) (Optional) The character encoding of the data. The supported values are UTF-8, ISO-8859-1, UTF-16BE, UTF-16LE, UTF-32BE, or UTF-32LE. The default value is UTF-8. Time Zone Time Zone --time_zone None (Preview) (Optional) Default time zone that is applied when parsing timestamp values that have no specific time zone. Check valid time zone names. If this value is not present, the timestamp values without specific time zone is parsed using default time zone UTC. Date Format Date Format --date_format None (Preview) (Optional) Format elements that define how the DATE values are formatted in the input files (for example, MM/DD/YYYY). If this value is present, this format is the only compatible DATE format. Schema autodetection will also decide DATE column type based on this format instead of the existing format. If this value is not present, the DATE field is parsed with the default formats. Datetime Format Datetime Format --datetime_format None (Preview) (Optional) Format elements that define how the DATETIME values are formatted in the input files (for example, MM/DD/YYYY HH24:MI:SS.FF3). If this value is present, this format is the only compatible DATETIME format. Schema autodetection will also decide DATETIME column type based on this format instead of the existing format. If this value is not present, the DATETIME field is parsed with the default formats. Time Format Time Format --time_format None (Preview) (Optional) Format elements that define how the TIME values are formatted in the input files (for example, HH24:MI:SS.FF3). If this value is present, this format is the only compatible TIME format. Schema autodetection will also decide TIME column type based on this format instead of the existing format. If this value is not present, the TIME field is parsed with the default formats. Timestamp Format Timestamp Format --timestamp_format None (Preview) (Optional) Format elements that define how the TIMESTAMP values are formatted in the input files (for example, MM/DD/YYYY HH24:MI:SS.FF3). If this value is present, this format is the only compatible TIMESTAMP format. Schema autodetection will also decide TIMESTAMP column type based on this format instead of the existing format. If this value is not present, the TIMESTAMP field is parsed with the default formats. What's next

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-08-07 UTC.

[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-07 UTC."],[[["Newline-delimited JSON (ndJSON) data can be loaded from Cloud Storage into BigQuery, either creating a new table or partition or appending to/overwriting an existing one, where the data is converted into a columnar format."],["When loading data from Cloud Storage, the dataset containing the BigQuery table must be located in the same regional or multi-regional location as the Cloud Storage bucket."],["BigQuery offers flexibility in managing data load operations through write preferences, allowing users to write to empty tables, append data to existing tables, or overwrite entire tables."],["BigQuery supports loading semi-structured JSON data, allowing fields to take on different types, which can be handled using the `JSON` type in the table schema."],["The process of loading JSON data can be performed through the console, SQL statements, the `bq` command-line tool, API methods, or client libraries, with each method providing options for schema specification, error handling, and data manipulation."]]],[]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4