A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://developers.google.com/bigquery/docs/loading-data-cloud-storage-avro below:

Load Avro data from Cloud Storage | BigQuery

Stay organized with collections Save and categorize content based on your preferences.

Load Avro data from Cloud Storage

Avro is an open source data format that bundles serialized data with the data's schema in the same file.

When you load Avro data from Cloud Storage, you can load the data into a new table or partition, or you can append to or overwrite an existing table or partition. When your data is loaded into BigQuery, it is converted into columnar format for Capacitor (BigQuery's storage format).

When you load data from Cloud Storage into a BigQuery table, the dataset that contains the table must be in the same regional or multi- regional location as the Cloud Storage bucket.

For information about loading Avro data from a local file, see Loading data into BigQuery from a local data source.

Limitations

You are subject to the following limitations when you load data into BigQuery from a Cloud Storage bucket:

The following limitations also apply when loading Avro files into BigQuery:

For information about BigQuery load job limits, see Load jobs.

Input file requirements

To avoid resourcesExceeded errors when loading Avro files into BigQuery, follow these guidelines:

Before you begin

Grant Identity and Access Management (IAM) roles that give users the necessary permissions to perform each task in this document, and create a dataset and table to store your data.

Required permissions

To load data into BigQuery, you need IAM permissions to run a load job and load data into BigQuery tables and partitions. If you are loading data from Cloud Storage, you also need IAM permissions to access the bucket that contains your data.

Permissions to load data into BigQuery

To load data into a new BigQuery table or partition or to append or overwrite an existing table or partition, you need the following IAM permissions:

Each of the following predefined IAM roles includes the permissions that you need in order to load data into a BigQuery table or partition:

Additionally, if you have the bigquery.datasets.create permission, you can create and update tables using a load job in the datasets that you create.

For more information on IAM roles and permissions in BigQuery, see Predefined roles and permissions.

Permissions to load data from Cloud Storage

To get the permissions that you need to load data from a Cloud Storage bucket, ask your administrator to grant you the Storage Admin (roles/storage.admin) IAM role on the bucket. For more information about granting roles, see Manage access to projects, folders, and organizations.

This predefined role contains the permissions required to load data from a Cloud Storage bucket. To see the exact permissions that are required, expand the Required permissions section:

Required permissions

The following permissions are required to load data from a Cloud Storage bucket:

You might also be able to get these permissions with custom roles or other predefined roles.

Create a dataset and table

To store your data, you must create a BigQuery dataset, and then create a BigQuery table within that dataset.

Advantages of Avro

Avro is the preferred format for loading data into BigQuery. Loading Avro files has the following advantages over CSV and JSON (newline delimited):

Avro schemas

When you load Avro files into a new BigQuery table, the table schema is automatically retrieved using the source data. When BigQuery retrieves the schema from the source data, the alphabetically last file is used.

For example, you have the following Avro files in Cloud Storage:

gs://mybucket/00/
  a.avro
  z.avro
gs://mybucket/01/
  b.avro

Running this command in the bq command-line tool loads all of the files (as a comma-separated list), and the schema is derived from mybucket/01/b.avro:

bq load \
--source_format=AVRO \
dataset.table \
"gs://mybucket/00/*.avro","gs://mybucket/01/*.avro"

When importing multiple Avro files with different Avro schemas, all schemas must be compatible with Avro's schema resolution.

When BigQuery detects the schema, some Avro data types are converted to BigQuery data types to make them compatible with GoogleSQL syntax. For more information, see Avro conversions.

To provide a table schema for creating external tables, set the

referenceFileSchemaUri

property in BigQuery API or


--reference_file_schema_uri

parameter in bq command-line tool to the URL of the reference file.

For example, --reference_file_schema_uri="gs://mybucket/schema.avro".

You can also import schema into BigQuery, by specifying a JSON schema file.

Avro compression

BigQuery supports the following compression codecs for Avro file contents:

Loading Avro data into a new table

To load Avro data from Cloud Storage into a new BigQuery table, select one of the following options:

Console
  1. In the Google Cloud console, open the BigQuery page.

    Go to BigQuery

  2. In the Explorer panel, expand your project and select a dataset.

  3. Expand the more_vert Actions option and click Open.

  4. In the details panel, click Create table add_box.

  5. On the Create table page, in the Source section:

  6. On the Create table page, in the Destination section:

  7. In the Schema section, no action is necessary. The schema is self-described in Avro files.

  8. (Optional) To partition the table, choose your options in the Partition and cluster settings. For more information, see Creating partitioned tables.

  9. (Optional) For Partitioning filter, click the Require partition filter box to require users to include a WHERE clause that specifies the partitions to query. Requiring a partition filter may reduce cost and improve performance. For more information, see Require a partition filter in queries. This option is unavailable if No partitioning is selected.

  10. (Optional) To cluster the table, in the Clustering order box, enter between one and four field names.

  11. (Optional) Click Advanced options.

  12. Click Create table.

Note: When you load data into an empty table by using the Google Cloud console, you cannot add a label, description, table expiration, or partition expiration.

After the table is created, you can update the table's expiration, description, and labels, but you cannot add a partition expiration after a table is created using the Google Cloud console. For more information, see Managing tables.

SQL

Use the LOAD DATA DDL statement. The following example loads an Avro file into the new table mytable:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    LOAD DATA OVERWRITE mydataset.mytable
    FROM FILES (
      format = 'avro',
      uris = ['gs://bucket/path/file.avro']);
  3. Click play_circle Run.

For more information about how to run queries, see Run an interactive query.

bq

Use the bq load command, specify AVRO using the --source_format flag, and include a Cloud Storage URI. You can include a single URI, a comma-separated list of URIs, or a URI containing a wildcard.

(Optional) Supply the --location flag and set the value to your location.

Other optional flags include:

To load Avro data into BigQuery, enter the following command:

bq --location=location load \
--source_format=format \
dataset.table \
path_to_source

Replace the following:

Examples:

The following command loads data from gs://mybucket/mydata.avro into a table named mytable in mydataset.

    bq load \
    --source_format=AVRO \
    mydataset.mytable \
    gs://mybucket/mydata.avro

The following command loads data from gs://mybucket/mydata.avro into an ingestion-time partitioned table named mytable in mydataset.

    bq load \
    --source_format=AVRO \
    --time_partitioning_type=DAY \
    mydataset.mytable \
    gs://mybucket/mydata.avro

The following command loads data from gs://mybucket/mydata.avro into a new partitioned table named mytable in mydataset. The table is partitioned on the mytimestamp column.

    bq load \
    --source_format=AVRO \
    --time_partitioning_field mytimestamp \
    mydataset.mytable \
    gs://mybucket/mydata.avro

The following command loads data from multiple files in gs://mybucket/ into a table named mytable in mydataset. The Cloud Storage URI uses a wildcard.

    bq load \
    --source_format=AVRO \
    mydataset.mytable \
    gs://mybucket/mydata*.avro

The following command loads data from multiple files in gs://mybucket/ into a table named mytable in mydataset. The command includes a comma- separated list of Cloud Storage URIs with wildcards.

    bq load \
    --source_format=AVRO \
    mydataset.mytable \
    "gs://mybucket/00/*.avro","gs://mybucket/01/*.avro"
API
  1. Create a load job that points to the source data in Cloud Storage.

  2. (Optional) Specify your location in the location property in the jobReference section of the job resource.

  3. The source URIs property must be fully-qualified, in the format gs://bucket/object. Each URI can contain one '*' wildcard character.

  4. Specify the Avro data format by setting the sourceFormat property to AVRO.

  5. To check the job status, call jobs.get(job_id*), where job_id is the ID of the job returned by the initial request.

API notes:

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

There are two ways to ensure that Avro data is loaded into BigQuery as JSON data:

  1. Annotate your Avro schema with sqlType set to JSON. For example, if you load data with the following Avro schema, then the json_field column is read as a JSON type:

    {
        "type": {"type": "string", "sqlType": "JSON"},
        "name": "json_field"
    }
  2. Specify the BigQuery destination table schema explicitly and set the column type to JSON. For more information, see Specifying a schema.

If you do not specify JSON as the type in either the Avro schema or the BigQuery table schema, then the data will be read as a STRING.

Appending to or overwriting a table with Avro data

You can load additional data into a table either from source files or by appending query results.

In the Google Cloud console, use the Write preference option to specify what action to take when you load data from a source file or from a query result.

You have the following options when you load additional data into a table:

Console option bq tool flag BigQuery API property Description Write if empty Not supported WRITE_EMPTY Writes the data only if the table is empty. Append to table --noreplace or --replace=false; if --[no]replace is unspecified, the default is append WRITE_APPEND (Default) Appends the data to the end of the table. Overwrite table --replace or --replace=true WRITE_TRUNCATE Erases all existing data in a table before writing the new data. This action also deletes the table schema, row level security, and removes any Cloud KMS key.

If you load data into an existing table, the load job can append the data or overwrite the table.

Note: This page does not cover appending or overwriting partitioned tables. For information on appending and overwriting partitioned tables, see: Appending to and overwriting partitioned table data.

To append or overwrite a table with Avro data:

Console
  1. In the Google Cloud console, open the BigQuery page.

    Go to BigQuery

  2. In the Explorer panel, expand your project and select a dataset.

  3. Expand the more_vert Actions option and click Open.

  4. In the details panel, click Create table add_box.

  5. On the Create table page, in the Source section:

  6. On the Create table page, in the Destination section:

  7. In the Schema section, no action is necessary. The schema is self-described in Avro files.

    Note: It is possible to modify the table's schema when you append or overwrite it. For more information on supported schema changes during a load operation, see Modifying table schemas.
  8. For Partition and cluster settings, leave the default values. You cannot convert a table to a partitioned or clustered table by appending or overwriting it, and the Google Cloud console does not support appending to or overwriting partitioned or clustered tables in a load job.

  9. Click Advanced options.

  10. Click Create table.

SQL

Use the LOAD DATA DDL statement. The following example appends an Avro file to the table mytable:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    LOAD DATA INTO mydataset.mytable
    FROM FILES (
      format = 'avro',
      uris = ['gs://bucket/path/file.avro']);
  3. Click play_circle Run.

For more information about how to run queries, see Run an interactive query.

bq

Enter the bq load command with the --replace flag to overwrite the table. Use the --noreplace flag to append data to the table. If no flag is specified, the default is to append data. Supply the --source_format flag and set it to AVRO. Because Avro schemas are automatically retrieved from the self-describing source data, you do not need to provide a schema definition.

Note: It is possible to modify the table's schema when you append or overwrite it. For more information on supported schema changes during a load operation, see Modifying table schemas.

(Optional) Supply the --location flag and set the value to your location.

Other optional flags include:

bq --location=location load \
--[no]replace \
--source_format=format \
dataset.table \
path_to_source

Replace the following:

Examples:

The following command loads data from gs://mybucket/mydata.avro and overwrites a table named mytable in mydataset.

    bq load \
    --replace \
    --source_format=AVRO \
    mydataset.mytable \
    gs://mybucket/mydata.avro

The following command loads data from gs://mybucket/mydata.avro and appends data to a table named mytable in mydataset.

    bq load \
    --noreplace \
    --source_format=AVRO \
    mydataset.mytable \
    gs://mybucket/mydata.avro

For information on appending and overwriting partitioned tables using the bq command-line tool, see: Appending to and overwriting partitioned table data.

API
  1. Create a load job that points to the source data in Cloud Storage.

  2. (Optional) Specify your location in the location property in the jobReference section of the job resource.

  3. The source URIs property must be fully-qualified, in the format gs://bucket/object. You can include multiple URIs as a comma-separated list. Note that wildcards are also supported.

  4. Specify the data format by setting the configuration.load.sourceFormat property to AVRO.

  5. Specify the write preference by setting the configuration.load.writeDisposition property to WRITE_TRUNCATE or WRITE_APPEND.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Loading hive-partitioned Avro data

BigQuery supports loading hive partitioned Avro data stored on Cloud Storage and populates the hive partitioning columns as columns in the destination BigQuery managed table. For more information, see Loading Externally Partitioned Data from Cloud Storage.

Avro conversions

BigQuery converts Avro data types to the following BigQuery data types:

Primitive types Avro data type without logicalType attribute BigQuery data type Notes null BigQuery ignores these values boolean BOOLEAN int INTEGER long INTEGER float FLOAT double FLOAT bytes BYTES string STRING UTF-8 only Logical types

By default, BigQuery ignores the logicalType attribute for most of the types and uses the underlying Avro type instead. To convert Avro logical types to their corresponding BigQuery data types, set the --use_avro_logical_types flag to true using the bq command-line tool, or set the useAvroLogicalTypes property in the job resource when you call the jobs.insert method to create a load job.

The table below shows the conversion of Avro logical types to BigQuery data types.

Avro logical type BigQuery data type: Logical type disabled BigQuery data type: Logical type enabled date INTEGER DATE time-millis INTEGER TIME time-micros INTEGER (converted from LONG) TIME timestamp-millis INTEGER (converted from LONG) TIMESTAMP timestamp-micros INTEGER (converted from LONG) TIMESTAMP local-timestamp-millis INTEGER (converted from LONG) DATETIME local-timestamp-micros INTEGER (converted from LONG) DATETIME duration BYTES (converted from fixed type of size 12) BYTES (converted from fixed type of size 12) decimal NUMERIC, BIGNUMERIC, or STRING (see Decimal logical type) NUMERIC, BIGNUMERIC, or STRING (see Decimal logical type)

For more information on Avro data types, see the Apache Avro™ 1.8.2 Specification.

Note: When exporting to Avro from BigQuery, DATETIME is exported as a STRING with a custom logical time that is not recognized as a DATETIME upon importing back into BigQuery. Date logical type

In any Avro file you intend to load, you must specify date logical types in the following format:

{
       "type": {"logicalType": "date", "type": "int"},
       "name": "date_field"
}
Decimal logical type

Decimal logical types can be converted to NUMERIC, BIGNUMERIC , or STRING types. The converted type depends on the precision and scale parameters of the decimal logical type and the specified decimal target types. Specify the decimal target type as follows:

For backward compatibility, if the decimal target types are not specified, you can load an Avro file containing a bytes column with the decimal logical type into a BYTES column of an existing table. In this case, the decimal logical type on the column in the Avro file is ignored. This conversion mode is deprecated and might be removed in the future.

For more information on the Avro decimal logical type, see the Apache Avro™ 1.8.2 Specification.

Time logical type

In any Avro file you intend to load, you must specify time logical types in one of the following formats.

For millisecond precision:

{
       "type": {"logicalType": "time-millis", "type": "int"},
       "name": "time_millis_field"
}

For microsecond precision:

{
       "type": {"logicalType": "time-micros", "type": "int"},
       "name": "time_micros_field"
}
Timestamp logical type

In any Avro file you intend to load, you must specify timestamp logical types in one of the following formats.

For millisecond precision:

{
       "type": {"logicalType": "timestamp-millis", "type": "long"},
       "name": "timestamp_millis_field"
}

For microsecond precision:

{
       "type": {"logicalType": "timestamp-micros", "type": "long"},
       "name": "timestamp_micros_field"
}
Local-Timestamp logical type

In any Avro file you intend to load, you must specify a local-timestamp logical type in one of the following formats.

For millisecond precision:

{
       "type": {"logicalType": "local-timestamp-millis", "type": "long"},
       "name": "local_timestamp_millis_field"
}

For microsecond precision:

{
       "type": {"logicalType": "local-timestamp-micros", "type": "long"},
       "name": "local_timestamp_micros_field"
}
Complex types Avro data type BigQuery data type Notes record RECORD enum STRING array repeated fields Arrays of arrays are not supported. Arrays containing only NULL types are ignored. map<T> RECORD BigQuery converts an Avro map<T> field to a repeated RECORD that contains two fields: a key and a value. BigQuery stores the key as a STRING, and converts the value to its corresponding data type in BigQuery. union fixed BYTES

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4