Census tracts styled with a dot density renderer to show population density by race and ethnicity
What is a dot density style?The dot density style visualizes the density of a population, or other count, in a polygon data layer by randomly drawing dots within polygon boundaries. Each dot represents a constant numeric value of an attribute or a subset of attributes.
For example, when visualizing population density where each dot represents 100 people, a polygon with a population of 100,000 people would contain 1,000 dots randomly drawn within the polygon.
Unlike choropleth maps, field values used in dot density visualizations don't need to be normalized because the size of the polygon, together with the number of dots rendered within its boundaries, indicate the spatial density of that value.
How a dot density style worksThe dot density style is configured with a dot density renderer. A dot density renderer requires the following:
dotValue
, or the value each dot will represent for each attribute.referenceScale
referring to the view scale.The following example visualizes population density in southern California.
dotValue
to a value that makes sense for the scale (like 100).referenceScale
so the dotValue
can adjust as the user zooms in and out.legendOptions
. In this case it is people
.attributes
property, reference the field name containing the number of people in each feature.Expand
Use dark colors for code blocks Copy63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
const dotDensityRenderer = new DotDensityRenderer({
dotValue: 100,
outline: null,
referenceScale: 577790,
legendOptions: {
unit: "people",
},
attributes: [
{
field: "B03002_001E",
color: "#e8ca0d",
label: "Places where people live",
},
],
});
Population density by category
You can specify multiple attributes to visualize subcategories of the data. For example, we can visualize the same layer above, but categorize each dot by race/ethnicity. So each dot of a different color represents 100 people of the respective category (e.g. 1 red dot represents 100 white (non-Hispanic) people, each blue dot represents 100 African American people, each yellow dot represents 100 Hispanic people, etc).
Set multiple attributes to show subcategories of the population
Expand
Use dark colors for code blocks Copy74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
dotDensityRenderer.attributes = [
{
field: "B03002_003E",
color: "#f23c3f",
label: "White (non-Hispanic)",
},
{
field: "B03002_012E",
color: "#e8ca0d",
label: "Hispanic",
},
{
field: "B03002_004E",
color: "#00b6f1",
label: "Black or African American",
},
{
field: "B03002_006E",
color: "#32ef94",
label: "Asian",
},
{
field: "B03002_005E",
color: "#ff7fe9",
label: "American Indian/Alaskan Native",
},
{
field: "B03002_007E",
color: "#e2c4a5",
label: "Pacific Islander/Hawaiian Native",
},
{
field: "B03002_008E",
color: "#ff6a00",
label: "Other race",
},
{
field: "B03002_009E",
color: "#96f7ef",
label: "Two or more races",
},
];
Best practices
The following practices should be followed when creating a dot density visualization.
View scaleThis implementation of dot density allows you to linearly scale the dot value based on the view scale. As you zoom in and out of the initial view, the relative density of points remains the same across scales. Always set a referenceScale
to make the visualization work across many scale levels.
In addition to setting a referenceScale
, you should typically set a minScale
on the layer. Dot density visualizations are difficult to read when dots are no longer distinguishable, either because they coalesce or because they are too dispersed.
Setting a maxScale
on the layer is also important because dot density maps tend to become unreadable at larger scales. Users may start seeing patterns in the random distribution of dots that do not exist in reality. They may also mistakenly interpret the location of each dot as an actual point feature. Users are particularly susceptible to this when the dotValue
is set to 1. As an example, dot density visualizations on county datasets should only be viewed at the state or regional level.
You should use equal area spatial references whenever possible, particularly when building dot density visualizations that span global extents. Using heavily distorted spatial references with a dot density renderer is acceptable as long as you restrict the user from comparing the densities of features within the same view at large scales. Try not to compare features across multiple views when equal area projections cannot be used, since significant differences in area distortion may cause the user to misinterpret feature density in heavily distorted areas.
AttributesUse the attributes
property to specify one or more data values. When multiple attributes are specified, the group of attributes should make logical sense when visualized together, and generally should belong to a parent group. For example, you could map the density of pets, or the density of different kinds of pets, such as dogs or cats. However, it doesn't make sense to map the density of cats and the density of crops within the same renderer.
Use pop-ups to clearly communicate the actual value of the feature, so the user can explore the map visually and interactively.
API support Full support Partial support No supportRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4