A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://cwe.mitre.org/data/definitions/1287.html below:

CWE-1287: Improper Validation of Specified Type of Input (4.17)

Weakness ID: 1287

Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.

Description

The product receives input that is expected to be of a certain type, but it does not validate or incorrectly validates that the input is actually of the expected type.

Extended Description

When input does not comply with the expected type, attackers could trigger unexpected errors, cause incorrect actions to take place, or exploit latent vulnerabilities that would not be possible if the input conformed with the expected type.

This weakness can appear in type-unsafe programming languages, or in programming languages that support casting or conversion of an input to another type.

Common Consequences

This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact. Impact Details

Varies by Context

Scope: Other

Potential Mitigations

Phase(s) Mitigation

Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Effectiveness: High

Relationships

This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

Relevant to the view "Research Concepts" (View-1000)

Relevant to the view "Software Development" (View-699)

Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase. Phase Note Implementation

Applicable Platforms

This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages

Class: Not Language-Specific (Often Prevalent)

Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description CVE-2024-37032

Large language model (LLM) management tool does not validate the format of a digest value (

CWE-1287

) from a private, untrusted model registry, enabling relative path traversal (

CWE-23

), a.k.a. Probllama

CVE-2008-2223

SQL injection through an ID that was supposed to be numeric.

Memberships

Vulnerability Mapping Notes

Usage ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.

Content History

More information is available — Please edit the custom filter or select a different filter.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4