Application of empirical mode decomposition based artificial neural network model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=55&issue=1&article=013>; (ii) Das (2020) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=56&issue=2&article=002>.
Version: 0.2.0 Depends: EMD, forecast Suggests: knitr, rmarkdown, testthat (≥ 3.0.0) Published: 2023-09-14 DOI: 10.32614/CRAN.package.EMDANNhybrid Author: Pankaj Das [aut, cre], Achal Lama [aut], Girish Kumar Jha [aut] Maintainer: Pankaj Das <pankaj.das2 at icar.gov.in> License: GPL-3 NeedsCompilation: no CRAN checks: EMDANNhybrid results Documentation: Reference manual: EMDANNhybrid.pdf Vignettes: EMDANNhybrid (source, R code)Please use the canonical form https://CRAN.R-project.org/package=EMDANNhybrid to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4