Estimate the mean of a Gaussian vector, by choosing among a large collection of estimators, following the method developed by Y. Baraud, C. Giraud and S. Huet (2014) <doi:10.1214/13-AIHP539>. In particular it solves the problem of variable selection by choosing the best predictor among predictors emanating from different methods as lasso, elastic-net, adaptive lasso, pls, randomForest. Moreover, it can be applied for choosing the tuning parameter in a Gauss-lasso procedure.
Documentation: Downloads: Reverse dependencies: Linking:Please use the canonical form https://CRAN.R-project.org/package=LINselect to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4