Empirical Bayes methods for learning prior distributions from data. An unknown prior distribution (g) has yielded (unobservable) parameters, each of which produces a data point from a parametric exponential family (f). The goal is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical Bayes methods. Details and examples are in the paper by Narasimhan and Efron (2020, <doi:10.18637/jss.v094.i11>).
Documentation: Downloads: Reverse dependencies: Linking:Please use the canonical form https://CRAN.R-project.org/package=deconvolveR to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4