A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://code.activestate.com/recipes/230113-implementation-of-sets-using-sorted-lists below:

Implementation of sets using sorted lists « Python recipes « ActiveState Code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
""" altsets.py -- An alternate implementation of Sets.py

Implements set operations using sorted lists as the underlying data structure.

Advantages:

  * Space savings -- lists are much more compact than a dictionary
    based implementation.

  * Flexibility -- elements do not need to be hashable, only __cmp__
    is required.

  * Fast operations depending on the underlying data patterns.
    Non-overlapping sets get united, intersected, or differenced
    with only log(N) element comparisons.  Results are built using
    fast-slicing.

  * Algorithms are designed to minimize the number of compares
    which can be expensive.

  * Natural support for sets of sets.  No special accomodation needs to
    be made to use a set or dict as a set member, but users need to be
    careful to not mutate a member of a set since that may breaks its
    sort invariant.

Disadvantages:

  * Set construction uses list.sort() with potentially N log(N)
    comparisons.

  * Membership testing and element addition use log(N) comparisons.
    Element addition uses list.insert() with takes O(N) time.

ToDo:

   * Make the search routine adapt to the data; falling backing to
     a linear search when encountering random data.

"""

from bisect import bisect_left, insort_left

class Set(object):

    def __init__(self, iterable):
        data = list(iterable)
        data.sort()
        result = data[:1]
        for elem in data[1:]:
            if elem == result[-1]:
                continue
            result.append(elem)
        self.data = result
        
    def __repr__(self):
        return 'Set(' + repr(self.data) + ')'

    def __iter__(self):
        return iter(self.data)

    def __contains__(self, elem):
        data = self.data
        i = bisect_left(self.data, elem, 0)
        return i<len(data) and data[i] == elem

    def add(self, elem):
        if elem not in self:
            insort_left(self.data, elem)

    def remove(self, elem):
        data = self.data
        i = bisect_left(self.data, elem, 0)
        if i<len(data) and data[i] == elem:
            del data[i]
 
    def _getotherdata(other):
        if not isinstance(other, Set):
            other = Set(other)
        return other.data
    _getotherdata = staticmethod(_getotherdata)

    def __cmp__(self, other, cmp=cmp):
        return cmp(self.data, Set._getotherdata(other))

    def union(self, other, find=bisect_left):
        i = j = 0
        x = self.data
        y = Set._getotherdata(other)
        result = Set([])        
        append = result.data.append
        extend = result.data.extend
        try:
            while 1:
                if x[i] == y[j]:
                    append(x[i])
                    i += 1
                    j += 1
                elif x[i] > y[j]:
                    cut = find(y, x[i], j)
                    extend(y[j:cut])
                    j = cut
                else:
                    cut = find(x, y[j], i)
                    extend(x[i:cut])
                    i = cut
        except IndexError:
            extend(x[i:])
            extend(y[j:])
        return result

    def intersection(self, other, find=bisect_left):
        i = j = 0
        x = self.data
        y = Set._getotherdata(other)
        result = Set([])        
        append = result.data.append
        try:
            while 1:
                if x[i] == y[j]:
                    append(x[i])
                    i += 1
                    j += 1
                elif x[i] > y[j]:
                    j = find(y, x[i], j)
                else:
                    i = find(x, y[j], i)
        except IndexError:
            pass
        return result
    
    def difference(self, other, find=bisect_left):
        i = j = 0
        x = self.data
        y = Set._getotherdata(other)
        result = Set([])        
        extend = result.data.extend
        try:
            while 1:
                if x[i] == y[j]:
                    i += 1
                    j += 1
                elif x[i] > y[j]:
                    j = find(y, x[i], j)
                else:
                    cut = find(x, y[j], i)
                    extend(x[i:cut])
                    i = cut
        except IndexError:
            extend(x[i:])
        return result

    def symmetric_difference(self, other, find=bisect_left):
        i = j = 0
        x = self.data
        y = Set._getotherdata(other)
        result = Set([])
        extend = result.data.extend
        try:
            while 1:
                if x[i] == y[j]:
                    i += 1
                    j += 1
                elif x[i] > y[j]:
                    cut = find(y, x[i], j)
                    extend(y[j:cut])
                    j = cut
                else:
                    cut = find(x, y[j], i)
                    extend(x[i:cut])
                    i = cut
        except IndexError:
            extend(x[i:])
            extend(y[j:])
        return result


a = Set('abracadabra')
b = Set('alacazam')
print a < b
print a
print b
print map(a.__contains__, list('abcdr'))
print map(a.__contains__, list('0ey'))
print list(a)
print a.union(b), ' :union'
print b.union(a), ' :union'
print a.intersection(b), ' :intersection'
print a.difference(b), ' :difference'
print b.difference(a), ' :difference'
print a.symmetric_difference(b), ' :symmetric_difference'
print b.symmetric_difference(a), ' :symmetric_difference'
print a.intersection(b).union(a.symmetric_difference(b)) == a.union(b)
print a.intersection(b).intersection(a.symmetric_difference(b)) == Set([])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4