A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models below:

Introduction to tuning | Generative AI on Vertex AI

Introduction to tuning

Stay organized with collections Save and categorize content based on your preferences.

Model tuning is a crucial process in adapting Gemini to perform specific tasks with greater precision and accuracy. Model tuning works by providing a model with a training dataset that contains a set of examples of specific downstream tasks.

This page provides an overview of model tuning for Gemini, describes the tuning options available for Gemini, and helps you determine when each tuning option should be used.

Benefits of model tuning

Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides the following benefits:

Tuning compared to prompt design

We recommend starting with prompting to find the optimal prompt. Then, move on to fine-tuning (if required) to further boost performances or fix recurrent errors. While adding more examples might be beneficial, it is important to evaluate where the model makes mistakes before adding more data. High-quality, well-labeled data is crucial for good performance and better than quantity. Also, the data you use for fine-tuning should reflect the prompt distribution, format and context the model will encounter in production.

Tuning provides the following benefits over prompt design:

Tuning approaches

Parameter-efficient tuning and full fine-tuning are two approaches to customizing large models. Both methods have their advantages and implications in terms of model quality and resource efficiency.

Parameter efficient tuning

Parameter-efficient tuning, also called adapter tuning, enables efficient adaptation of large models to your specific tasks or domain. Parameter-efficient tuning updates a relatively small subset of the model's parameters during the tuning process.

To understand how Vertex AI supports adapter tuning and serving, you can find more details in the following whitepaper, Adaptation of Large Foundation Models.

Full fine-tuning

Full fine-tuning updates all parameters of the model, making it suitable for adapting the model to highly complex tasks, with the potential of achieving higher quality. However full fine tuning demands higher computational resources for both tuning and serving, leading to higher overall costs.

Parameter efficient tuning compared to full fine tuning

Parameter-efficient tuning is more resource efficient and cost effective compared to full fine-tuning. It uses significantly lower computational resources to train. It's able to adapt the model faster with a smaller dataset. The flexibility of parameter-efficient tuning offers a solution for multi-task learning without the need for extensive retraining.

Supported tuning methods

Vertex AI supports supervised fine-tuning to customize foundational models.

Supervised fine-tuning

Supervised fine-tuning improves the performance of the model by teaching it a new skill. Data that contains hundreds of labeled examples is used to teach the model to mimic a desired behavior or task. Each labeled example demonstrates what you want the model to output during inference.

When you run a supervised fine-tuning job, the model learns additional parameters that help it encode the necessary information to perform the desired task or learn the desired behavior. These parameters are used during inference. The output of the tuning job is a new model that combines the newly learned parameters with the original model.

Supervised fine-tuning of a text model is a good option when the output of your model isn't complex and is relatively easy to define. Supervised fine-tuning is recommended for classification, sentiment analysis, entity extraction, summarization of content that's not complex, and writing domain-specific queries. For code models, supervised tuning is the only option.

Models that support supervised fine-tuning

For more information on using supervised fine-tuning with each respective model, see the following pages: Tune text, image, audio, and document data types.

What's next

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-05-07 UTC.

[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-05-07 UTC."],[],[]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.3