Query statements scan one or more tables or expressions and return the computed result rows. This topic describes the syntax for SQL queries in GoogleSQL for Spanner.
SQL syntax notation rulesThe GoogleSQL documentation commonly uses the following syntax notation rules:
[ ]
: Optional clause.{ a | b | c }
: Logical OR
. Select one option....
: Preceding item can repeat."
: Syntax wrapped in double quotes (""
) is required.query_statement: [ statement_hint_expr ] [ table_hint_expr ] [ join_hint_expr ] query_expr query_expr: [ WITH cte[, ...] ] { select | ( query_expr ) | set_operation } [ ORDER BY expression [{ ASC | DESC }] [, ...] ] [ LIMIT count [ OFFSET skip_rows ] ] [ FOR UPDATE ] select: SELECT [ { ALL | DISTINCT } ] [ AS { typename | STRUCT | VALUE } ] select_list [ FROM from_clause[, ...] ] [ WHERE bool_expression ] [ GROUP BY group_by_specification ] [ HAVING bool_expression ]
SELECT
statement
SELECT [ { ALL | DISTINCT } ] [ AS { typename | STRUCT | VALUE } ] select_list select_list: { select_all | select_expression } [, ...] select_all: [ expression. ]* [ EXCEPT ( column_name [, ...] ) ] [ REPLACE ( expression AS column_name [, ...] ) ] select_expression: expression [ [ AS ] alias ]
The SELECT
list defines the columns that the query will return. Expressions in the SELECT
list can refer to columns in any of the from_item
s in its corresponding FROM
clause.
Each item in the SELECT
list is one of:
*
expression
expression.*
SELECT *
SELECT *
, often referred to as select star, produces one output column for each column that's visible after executing the full query.
SELECT * FROM (SELECT "apple" AS fruit, "carrot" AS vegetable);
/*-------+-----------*
| fruit | vegetable |
+-------+-----------+
| apple | carrot |
*-------+-----------*/
SELECT expression
Items in a SELECT
list can be expressions. These expressions evaluate to a single value and produce one output column, with an optional explicit alias
.
If the expression doesn't have an explicit alias, it receives an implicit alias according to the rules for implicit aliases, if possible. Otherwise, the column is anonymous and you can't refer to it by name elsewhere in the query.
SELECT expression.*
An item in a SELECT
list can also take the form of expression.*
. This produces one output column for each column or top-level field of expression
. The expression must either be a table alias or evaluate to a single value of a data type with fields, such as a STRUCT.
The following query produces one output column for each column in the table groceries
, aliased as g
.
WITH groceries AS
(SELECT "milk" AS dairy,
"eggs" AS protein,
"bread" AS grain)
SELECT g.*
FROM groceries AS g;
/*-------+---------+-------*
| dairy | protein | grain |
+-------+---------+-------+
| milk | eggs | bread |
*-------+---------+-------*/
More examples:
WITH locations AS
(SELECT STRUCT("Seattle" AS city, "Washington" AS state) AS location
UNION ALL
SELECT STRUCT("Phoenix" AS city, "Arizona" AS state) AS location)
SELECT l.location.*
FROM locations l;
/*---------+------------*
| city | state |
+---------+------------+
| Seattle | Washington |
| Phoenix | Arizona |
*---------+------------*/
WITH locations AS
(SELECT ARRAY<STRUCT<city STRING, state STRING>>[("Seattle", "Washington"),
("Phoenix", "Arizona")] AS location)
SELECT l.LOCATION[offset(0)].*
FROM locations l;
/*---------+------------*
| city | state |
+---------+------------+
| Seattle | Washington |
*---------+------------*/
SELECT * EXCEPT
A SELECT * EXCEPT
statement specifies the names of one or more columns to exclude from the result. All matching column names are omitted from the output.
WITH orders AS
(SELECT 5 as order_id,
"sprocket" as item_name,
200 as quantity)
SELECT * EXCEPT (order_id)
FROM orders;
/*-----------+----------*
| item_name | quantity |
+-----------+----------+
| sprocket | 200 |
*-----------+----------*/
Note: SELECT * EXCEPT
doesn't exclude columns that don't have names. SELECT * REPLACE
A SELECT * REPLACE
statement specifies one or more expression AS identifier
clauses. Each identifier must match a column name from the SELECT *
statement. In the output column list, the column that matches the identifier in a REPLACE
clause is replaced by the expression in that REPLACE
clause.
A SELECT * REPLACE
statement doesn't change the names or order of columns. However, it can change the value and the value type.
WITH orders AS
(SELECT 5 as order_id,
"sprocket" as item_name,
200 as quantity)
SELECT * REPLACE ("widget" AS item_name)
FROM orders;
/*----------+-----------+----------*
| order_id | item_name | quantity |
+----------+-----------+----------+
| 5 | widget | 200 |
*----------+-----------+----------*/
WITH orders AS
(SELECT 5 as order_id,
"sprocket" as item_name,
200 as quantity)
SELECT * REPLACE (quantity/2 AS quantity)
FROM orders;
/*----------+-----------+----------*
| order_id | item_name | quantity |
+----------+-----------+----------+
| 5 | sprocket | 100 |
*----------+-----------+----------*/
Note: SELECT * REPLACE
doesn't replace columns that don't have names. SELECT DISTINCT
A SELECT DISTINCT
statement discards duplicate rows and returns only the remaining rows. SELECT DISTINCT
can't return columns of the following types:
PROTO
STRUCT
ARRAY
GRAPH_ELEMENT
GRAPH_PATH
SELECT ALL
A SELECT ALL
statement returns all rows, including duplicate rows. SELECT ALL
is the default behavior of SELECT
.
Queries that return a STRUCT
at the root of the return type aren't supported in Spanner APIs. For example, the following query is supported only as a subquery:
SELECT STRUCT(1, 2) FROM Users;
Returning an array of structs is supported. For example, the following queries are supported in Spanner APIs:
SELECT ARRAY(SELECT STRUCT(1 AS A, 2 AS B)) FROM Users;
SELECT ARRAY(SELECT AS STRUCT 1 AS a, 2 AS b) FROM Users;
However, query shapes that can return an ARRAY<STRUCT<...>>
typed NULL
value or an ARRAY<STRUCT<...>>
typed value with an element that's NULL
aren't supported in Spanner APIs, so the following query is supported only as a subquery:
SELECT ARRAY(SELECT IF(STARTS_WITH(Users.username, "a"), NULL, STRUCT(1, 2)))
FROM Users;
NULL
array of structs or NULL
array of struct elements isn't complete (in the logic sense of complete). That means some queries that clearly can't return NULL
s are still rejected and fine-tuning is sometimes necessary to get a query shape that's supported. The least troublesome query shapes use the ARRAY(SELECT AS STRUCT ... )
subquery to construct the array of struct values.
See Querying STRUCT elements in an ARRAY for more examples on how to query STRUCTs
inside an ARRAY
.
Also see notes about using STRUCTs
in subqueries.
SELECT AS STRUCT
SELECT AS STRUCT expr [[AS] struct_field_name1] [,...]
This produces a value table with a STRUCT row type, where the STRUCT field names and types match the column names and types produced in the SELECT
list.
Example:
SELECT ARRAY(SELECT AS STRUCT 1 a, 2 b)
SELECT AS STRUCT
can be used in a scalar or array subquery to produce a single STRUCT type grouping multiple values together. Scalar and array subqueries (see Subqueries) are normally not allowed to return multiple columns, but can return a single column with STRUCT type.
Anonymous columns are allowed.
Example:
SELECT AS STRUCT 1 x, 2, 3
The query above produces STRUCT values of type STRUCT<int64 x, int64, int64>.
The first field has the name x
while the second and third fields are anonymous.
The example above produces the same result as this SELECT AS VALUE
query using a struct constructor:
SELECT AS VALUE STRUCT(1 AS x, 2, 3)
Duplicate columns are allowed.
Example:
SELECT AS STRUCT 1 x, 2 y, 3 x
The query above produces STRUCT values of type STRUCT<int64 x, int64 y, int64 x>.
The first and third fields have the same name x
while the second field has the name y
.
The example above produces the same result as this SELECT AS VALUE
query using a struct constructor:
SELECT AS VALUE STRUCT(1 AS x, 2 AS y, 3 AS x)
SELECT AS typename
SELECT AS typename
expr [[AS] field]
[, ...]
A SELECT AS typename
statement produces a value table where the row type is a specific named type. Currently, protocol buffers are the only supported type that can be used with this syntax.
When selecting as a type that has fields, such as a proto message type, the SELECT
list may produce multiple columns. Each produced column must have an explicit or implicit alias that matches a unique field of the named type.
When used with SELECT DISTINCT
, or GROUP BY
or ORDER BY
using column ordinals, these operators are first applied on the columns in the SELECT
list. The value construction happens last. This means that DISTINCT
can be applied on the input columns to the value construction, including in cases where DISTINCT
wouldn't be allowed after value construction because grouping isn't supported on the constructed type.
The following is an example of a SELECT AS typename
query.
SELECT AS tests.TestProtocolBuffer mytable.key int64_val, mytable.name string_val
FROM mytable;
The query returns the output as a tests.TestProtocolBuffer
protocol buffer. mytable.key int64_val
means that values from the key
column are stored in the int64_val
field in the protocol buffer. Similarly, values from the mytable.name
column are stored in the string_val
protocol buffer field.
To learn more about protocol buffers, see Work with protocol buffers.
SELECT AS VALUE
SELECT AS VALUE
produces a value table from any SELECT
list that produces exactly one column. Instead of producing an output table with one column, possibly with a name, the output will be a value table where the row type is just the value type that was produced in the one SELECT
column. Any alias the column had will be discarded in the value table.
Example:
SELECT AS VALUE 1
The query above produces a table with row type INT64.
Example:
SELECT AS VALUE STRUCT(1 AS a, 2 AS b) xyz
The query above produces a table with row type STRUCT<a int64, b int64>
.
Example:
SELECT AS VALUE v FROM (SELECT AS STRUCT 1 a, true b) v WHERE v.b
Given a value table v
as input, the query above filters out certain values in the WHERE
clause, and then produces a value table using the exact same value that was in the input table. If the query above didn't use SELECT AS VALUE
, then the output table schema would differ from the input table schema because the output table would be a regular table with a column named v
containing the input value.
FROM
clause
FROM from_clause[, ...] from_clause: from_item [ tablesample_operator ] from_item: { table_name [ table_hint_expr ] [ as_alias ] | { join_operation | ( join_operation ) } | ( query_expr ) [ table_hint_expr ] [ as_alias ] | field_path | unnest_operator | cte_name [ table_hint_expr ] [ as_alias ] | graph_table_operator [ as_alias ] } as_alias: [ AS ] alias
The FROM
clause indicates the table or tables from which to retrieve rows, and specifies how to join those rows together to produce a single stream of rows for processing in the rest of the query.
tablesample_operator
See TABLESAMPLE operator.
graph_table_operator
See GRAPH_TABLE operator.
table_name
The name of an existing table.
SELECT * FROM Roster;
join_operation
See Join operation.
query_expr
( query_expr ) [ [ AS ] alias ]
is a table subquery.
field_path
In the FROM
clause, field_path
is any path that resolves to a field within a data type. field_path
can go arbitrarily deep into a nested data structure.
Some examples of valid field_path
values include:
SELECT * FROM T1 t1, t1.array_column;
SELECT * FROM T1 t1, t1.struct_column.array_field;
SELECT (SELECT ARRAY_AGG(c) FROM t1.array_column c) FROM T1 t1;
SELECT a.struct_field1 FROM T1 t1, t1.array_of_structs a;
SELECT (SELECT STRING_AGG(a.struct_field1) FROM t1.array_of_structs a) FROM T1 t1;
Field paths in the FROM
clause must end in an array or a repeated field. In addition, field paths can't contain arrays or repeated fields before the end of the path. For example, the path array_column.some_array.some_array_field
is invalid because it contains an array before the end of the path.
UNNEST
, or use the fully-qualified path. Note: If a path has more than one name, and it matches a field name, it's interpreted as a field name. To force the path to be interpreted as a table name, wrap the path using `
. unnest_operator
See UNNEST operator.
cte_name
Common table expressions (CTEs) in a WITH
Clause act like temporary tables that you can reference anywhere in the FROM
clause. In the example below, subQ1
and subQ2
are CTEs.
Example:
WITH
subQ1 AS (SELECT * FROM Roster WHERE SchoolID = 52),
subQ2 AS (SELECT SchoolID FROM subQ1)
SELECT DISTINCT * FROM subQ2;
UNNEST
operator
unnest_operator: { UNNEST( array ) [ as_alias ] | array_path [ as_alias ] } [ table_hint_expr ] [ WITH OFFSET [ as_alias ] ] array: { array_expression | array_path } as_alias: [AS] alias
The UNNEST
operator takes an array and returns a table with one row for each element in the array. The output of UNNEST
is one value table column. For these ARRAY
element types, SELECT *
against the value table column returns multiple columns:
STRUCT
PROTO
Input values:
array_expression
: An expression that produces an array and that's not an array path.array_path
: The path to an ARRAY
type.
UNNEST
operation, the path must start with a range variable name.UNNEST
operation, the path can optionally start with a range variable name.The UNNEST
operation with any correlated array_path
must be on the right side of a CROSS JOIN
, LEFT JOIN
, or INNER JOIN
operation.
as_alias
: If specified, defines the explicit name of the value table column containing the array element values. It can be used to refer to the column elsewhere in the query.
WITH OFFSET
: UNNEST
destroys the order of elements in the input array. Use this optional clause to return an additional column with the array element indexes, or offsets. Offset counting starts at zero for each row produced by the UNNEST
operation. This column has an optional alias; If the optional alias isn't used, the default column name is offset
.
Example:
SELECT * FROM UNNEST ([10,20,30]) as numbers WITH OFFSET;
/*---------+--------*
| numbers | offset |
+---------+--------+
| 10 | 0 |
| 20 | 1 |
| 30 | 2 |
*---------+--------*/
You can also use UNNEST
outside of the FROM
clause with the IN
operator.
For several ways to use UNNEST
, including construction, flattening, and filtering, see Work with arrays.
To learn more about the ways you can use UNNEST
explicitly and implicitly, see Explicit and implicit UNNEST
.
UNNEST
and structs
For an input array of structs, UNNEST
returns a row for each struct, with a separate column for each field in the struct. The alias for each column is the name of the corresponding struct field.
Example:
SELECT *
FROM UNNEST(
ARRAY<
STRUCT<
x INT64,
y STRING,
z STRUCT<a INT64, b INT64>>>[
(1, 'foo', (10, 11)),
(3, 'bar', (20, 21))]);
/*---+-----+----------*
| x | y | z |
+---+-----+----------+
| 1 | foo | {10, 11} |
| 3 | bar | {20, 21} |
*---+-----+----------*/
Because the UNNEST
operator returns a value table, you can alias UNNEST
to define a range variable that you can reference elsewhere in the query. If you reference the range variable in the SELECT
list, the query returns a struct containing all of the fields of the original struct in the input table.
Example:
SELECT *, struct_value
FROM UNNEST(
ARRAY<
STRUCT<
x INT64,
y STRING>>[
(1, 'foo'),
(3, 'bar')]) AS struct_value;
/*---+-----+--------------*
| x | y | struct_value |
+---+-----+--------------+
| 3 | bar | {3, bar} |
| 1 | foo | {1, foo} |
*---+-----+--------------*/
UNNEST
and protocol buffers
For an input array of protocol buffers, UNNEST
returns a row for each protocol buffer, with a separate column for each field in the protocol buffer. The alias for each column is the name of the corresponding protocol buffer field.
Example:
SELECT *
FROM UNNEST(
ARRAY<googlesql.examples.music.Album>[
NEW googlesql.examples.music.Album (
'The Goldberg Variations' AS album_name,
['Aria', 'Variation 1', 'Variation 2'] AS song
)
]
);
/*-------------------------+--------+----------------------------------*
| album_name | singer | song |
+-------------------------+--------+----------------------------------+
| The Goldberg Variations | NULL | [Aria, Variation 1, Variation 2] |
*-------------------------+--------+----------------------------------*/
As with structs, you can alias UNNEST
to define a range variable. You can reference this alias in the SELECT
list to return a value table where each row is a protocol buffer element from the array.
SELECT proto_value
FROM UNNEST(
ARRAY<googlesql.examples.music.Album>[
NEW googlesql.examples.music.Album (
'The Goldberg Variations' AS album_name,
['Aria', 'Var. 1'] AS song
)
]
) AS proto_value;
/*---------------------------------------------------------------------*
| proto_value |
+---------------------------------------------------------------------+
| {album_name: "The Goldberg Variations" song: "Aria" song: "Var. 1"} |
*---------------------------------------------------------------------*/
Explicit and implicit UNNEST
Array unnesting can be either explicit or implicit. To learn more, see the following sections.
Explicit unnestingThe UNNEST
keyword is required in explicit unnesting. For example:
WITH Coordinates AS (SELECT [1,2] AS position)
SELECT results FROM Coordinates, UNNEST(Coordinates.position) AS results;
This example and the following examples use the array_path
called Coordinates.position
to illustrate unnesting.
The UNNEST
keyword isn't used in implicit unnesting.
For example:
WITH Coordinates AS (SELECT [1,2] AS position)
SELECT results FROM Coordinates, Coordinates.position AS results;
Tables and implicit unnesting
When you use array_path
with implicit UNNEST
, array_path
must be prepended with the table. For example:
WITH Coordinates AS (SELECT [1,2] AS position)
SELECT results FROM Coordinates, Coordinates.position AS results;
UNNEST
and NULL
values
UNNEST
treats NULL
values as follows:
NULL
and empty arrays produce zero rows.NULL
values produces rows containing NULL
values.TABLESAMPLE
operator
tablesample_clause: TABLESAMPLE sample_method (sample_size percent_or_rows ) sample_method: { BERNOULLI | RESERVOIR } sample_size: numeric_value_expression percent_or_rows: { PERCENT | ROWS }
Description
You can use the TABLESAMPLE
operator to select a random sample of a dataset. This operator is useful when you're working with tables that have large amounts of data and you don't need precise answers.
sample_method
: When using the TABLESAMPLE
operator, you must specify the sampling algorithm to use:
BERNOULLI
: Each row is independently selected with the probability given in the percent
clause. As a result, you get approximately N * percent/100
rows.RESERVOIR
: Takes as parameter an actual sample size K (expressed as a number of rows). If the input is smaller than K, it outputs the entire input relation. If the input is larger than K, reservoir sampling outputs a sample of size exactly K, where any sample of size K is equally likely.sample_size
: The size of the sample.percent_or_rows
: The TABLESAMPLE
operator requires that you choose either ROWS
or PERCENT
. If you choose PERCENT
, the value must be between 0 and 100. If you choose ROWS
, the value must be greater than or equal to 0.Examples
The following examples illustrate the use of the TABLESAMPLE
operator.
Select from a table using the RESERVOIR
sampling method:
SELECT MessageId
FROM Messages TABLESAMPLE RESERVOIR (100 ROWS);
Select from a table using the BERNOULLI
sampling method:
SELECT MessageId
FROM Messages TABLESAMPLE BERNOULLI (0.1 PERCENT);
Use TABLESAMPLE
with a subquery:
SELECT Subject FROM
(SELECT MessageId, Subject FROM Messages WHERE ServerId="test")
TABLESAMPLE BERNOULLI(50 PERCENT)
WHERE MessageId > 3;
Use a TABLESAMPLE
operation with a join to another table.
SELECT S.Subject
FROM
(SELECT MessageId, ThreadId FROM Messages WHERE ServerId="test") AS R
TABLESAMPLE RESERVOIR(5 ROWS),
Threads AS S
WHERE S.ServerId="test" AND R.ThreadId = S.ThreadId;
GRAPH_TABLE
operator
To learn more about this operator, see GRAPH_TABLE
operator in the Graph Query Language (GQL) reference guide.
join_operation: { cross_join_operation | condition_join_operation } cross_join_operation: from_item cross_join_operator [ join_hint_expr ] from_item condition_join_operation: from_item condition_join_operator [ join_hint_expr ] from_item join_condition cross_join_operator: { CROSS JOIN | , } condition_join_operator: { [INNER] [ join_method ] JOIN | FULL [OUTER] [ join_method ] JOIN | LEFT [OUTER] [ join_method ] JOIN | RIGHT [OUTER] [ join_method ] JOIN } join_method: { HASH } join_condition: { on_clause | using_clause } on_clause: ON bool_expression using_clause: USING ( column_list )
The JOIN
operation merges two from_item
s so that the SELECT
clause can query them as one source. The join operator and join condition specify how to combine and discard rows from the two from_item
s to form a single source.
[INNER] JOIN
An INNER JOIN
, or simply JOIN
, effectively calculates the Cartesian product of the two from_item
s and discards all rows that don't meet the join condition. Effectively means that it's possible to implement an INNER JOIN
without actually calculating the Cartesian product.
FROM A INNER JOIN B ON A.w = B.y
/*
Table A Table B Result
+-------+ +-------+ +---------------+
| w | x | * | y | z | = | w | x | y | z |
+-------+ +-------+ +---------------+
| 1 | a | | 2 | k | | 2 | b | 2 | k |
| 2 | b | | 3 | m | | 3 | c | 3 | m |
| 3 | c | | 3 | n | | 3 | c | 3 | n |
| 3 | d | | 4 | p | | 3 | d | 3 | m |
+-------+ +-------+ | 3 | d | 3 | n |
+---------------+
*/
FROM A INNER JOIN B USING (x)
/*
Table A Table B Result
+-------+ +-------+ +-----------+
| x | y | * | x | z | = | x | y | z |
+-------+ +-------+ +-----------+
| 1 | a | | 2 | k | | 2 | b | k |
| 2 | b | | 3 | m | | 3 | c | m |
| 3 | c | | 3 | n | | 3 | c | n |
| 3 | d | | 4 | p | | 3 | d | m |
+-------+ +-------+ | 3 | d | n |
+-----------+
*/
Example
This query performs an INNER JOIN
on the Roster
and TeamMascot
tables.
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster JOIN TeamMascot ON Roster.SchoolID = TeamMascot.SchoolID;
/*---------------------------*
| LastName | Mascot |
+---------------------------+
| Adams | Jaguars |
| Buchanan | Lakers |
| Coolidge | Lakers |
| Davis | Knights |
*---------------------------*/
You can use a correlated INNER JOIN
to flatten an array into a set of rows. To learn more, see Convert elements in an array to rows in a table.
CROSS JOIN
CROSS JOIN
returns the Cartesian product of the two from_item
s. In other words, it combines each row from the first from_item
with each row from the second from_item
.
If the rows of the two from_item
s are independent, then the result has M * N rows, given M rows in one from_item
and N in the other. Note that this still holds for the case when either from_item
has zero rows.
In a FROM
clause, a CROSS JOIN
can be written like this:
FROM A CROSS JOIN B
/*
Table A Table B Result
+-------+ +-------+ +---------------+
| w | x | * | y | z | = | w | x | y | z |
+-------+ +-------+ +---------------+
| 1 | a | | 2 | c | | 1 | a | 2 | c |
| 2 | b | | 3 | d | | 1 | a | 3 | d |
+-------+ +-------+ | 2 | b | 2 | c |
| 2 | b | 3 | d |
+---------------+
*/
You can use a correlated cross join to convert or flatten an array into a set of rows, though the (equivalent) INNER JOIN
is preferred over CROSS JOIN
for this case. To learn more, see Convert elements in an array to rows in a table.
Examples
This query performs an CROSS JOIN
on the Roster
and TeamMascot
tables.
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster CROSS JOIN TeamMascot;
/*---------------------------*
| LastName | Mascot |
+---------------------------+
| Adams | Jaguars |
| Adams | Knights |
| Adams | Lakers |
| Adams | Mustangs |
| Buchanan | Jaguars |
| Buchanan | Knights |
| Buchanan | Lakers |
| Buchanan | Mustangs |
| ... |
*---------------------------*/
Comma cross join (,)
CROSS JOIN
s can be written implicitly with a comma. This is called a comma cross join.
A comma cross join looks like this in a FROM
clause:
FROM A, B
/*
Table A Table B Result
+-------+ +-------+ +---------------+
| w | x | * | y | z | = | w | x | y | z |
+-------+ +-------+ +---------------+
| 1 | a | | 2 | c | | 1 | a | 2 | c |
| 2 | b | | 3 | d | | 1 | a | 3 | d |
+-------+ +-------+ | 2 | b | 2 | c |
| 2 | b | 3 | d |
+---------------+
*/
You can't write comma cross joins inside parentheses. To learn more, see Join operations in a sequence.
FROM (A, B) // INVALID
You can use a correlated comma cross join to convert or flatten an array into a set of rows. To learn more, see Convert elements in an array to rows in a table.
Examples
This query performs a comma cross join on the Roster
and TeamMascot
tables.
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster, TeamMascot;
/*---------------------------*
| LastName | Mascot |
+---------------------------+
| Adams | Jaguars |
| Adams | Knights |
| Adams | Lakers |
| Adams | Mustangs |
| Buchanan | Jaguars |
| Buchanan | Knights |
| Buchanan | Lakers |
| Buchanan | Mustangs |
| ... |
*---------------------------*/
FULL [OUTER] JOIN
A FULL OUTER JOIN
(or simply FULL JOIN
) returns all fields for all matching rows in both from_items
that meet the join condition. If a given row from one from_item
doesn't join to any row in the other from_item
, the row returns with NULL
values for all columns from the other from_item
.
FROM A FULL OUTER JOIN B ON A.w = B.y
/*
Table A Table B Result
+-------+ +-------+ +---------------------------+
| w | x | * | y | z | = | w | x | y | z |
+-------+ +-------+ +---------------------------+
| 1 | a | | 2 | k | | 1 | a | NULL | NULL |
| 2 | b | | 3 | m | | 2 | b | 2 | k |
| 3 | c | | 3 | n | | 3 | c | 3 | m |
| 3 | d | | 4 | p | | 3 | c | 3 | n |
+-------+ +-------+ | 3 | d | 3 | m |
| 3 | d | 3 | n |
| NULL | NULL | 4 | p |
+---------------------------+
*/
FROM A FULL OUTER JOIN B USING (x)
/*
Table A Table B Result
+-------+ +-------+ +--------------------+
| x | y | * | x | z | = | x | y | z |
+-------+ +-------+ +--------------------+
| 1 | a | | 2 | k | | 1 | a | NULL |
| 2 | b | | 3 | m | | 2 | b | k |
| 3 | c | | 3 | n | | 3 | c | m |
| 3 | d | | 4 | p | | 3 | c | n |
+-------+ +-------+ | 3 | d | m |
| 3 | d | n |
| 4 | NULL | p |
+--------------------+
*/
Example
This query performs a FULL JOIN
on the Roster
and TeamMascot
tables.
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster FULL JOIN TeamMascot ON Roster.SchoolID = TeamMascot.SchoolID;
/*---------------------------*
| LastName | Mascot |
+---------------------------+
| Adams | Jaguars |
| Buchanan | Lakers |
| Coolidge | Lakers |
| Davis | Knights |
| Eisenhower | NULL |
| NULL | Mustangs |
*---------------------------*/
LEFT [OUTER] JOIN
The result of a LEFT OUTER JOIN
(or simply LEFT JOIN
) for two from_item
s always retains all rows of the left from_item
in the JOIN
operation, even if no rows in the right from_item
satisfy the join predicate.
All rows from the left from_item
are retained; if a given row from the left from_item
doesn't join to any row in the right from_item
, the row will return with NULL
values for all columns exclusively from the right from_item
. Rows from the right from_item
that don't join to any row in the left from_item
are discarded.
FROM A LEFT OUTER JOIN B ON A.w = B.y
/*
Table A Table B Result
+-------+ +-------+ +---------------------------+
| w | x | * | y | z | = | w | x | y | z |
+-------+ +-------+ +---------------------------+
| 1 | a | | 2 | k | | 1 | a | NULL | NULL |
| 2 | b | | 3 | m | | 2 | b | 2 | k |
| 3 | c | | 3 | n | | 3 | c | 3 | m |
| 3 | d | | 4 | p | | 3 | c | 3 | n |
+-------+ +-------+ | 3 | d | 3 | m |
| 3 | d | 3 | n |
+---------------------------+
*/
FROM A LEFT OUTER JOIN B USING (x)
/*
Table A Table B Result
+-------+ +-------+ +--------------------+
| x | y | * | x | z | = | x | y | z |
+-------+ +-------+ +--------------------+
| 1 | a | | 2 | k | | 1 | a | NULL |
| 2 | b | | 3 | m | | 2 | b | k |
| 3 | c | | 3 | n | | 3 | c | m |
| 3 | d | | 4 | p | | 3 | c | n |
+-------+ +-------+ | 3 | d | m |
| 3 | d | n |
+--------------------+
*/
Example
This query performs a LEFT JOIN
on the Roster
and TeamMascot
tables.
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster LEFT JOIN TeamMascot ON Roster.SchoolID = TeamMascot.SchoolID;
/*---------------------------*
| LastName | Mascot |
+---------------------------+
| Adams | Jaguars |
| Buchanan | Lakers |
| Coolidge | Lakers |
| Davis | Knights |
| Eisenhower | NULL |
*---------------------------*/
RIGHT [OUTER] JOIN
The result of a RIGHT OUTER JOIN
(or simply RIGHT JOIN
) for two from_item
s always retains all rows of the right from_item
in the JOIN
operation, even if no rows in the left from_item
satisfy the join predicate.
All rows from the right from_item
are returned; if a given row from the right from_item
doesn't join to any row in the left from_item
, the row will return with NULL
values for all columns exclusively from the left from_item
. Rows from the left from_item
that don't join to any row in the right from_item
are discarded.
FROM A RIGHT OUTER JOIN B ON A.w = B.y
/*
Table A Table B Result
+-------+ +-------+ +---------------------------+
| w | x | * | y | z | = | w | x | y | z |
+-------+ +-------+ +---------------------------+
| 1 | a | | 2 | k | | 2 | b | 2 | k |
| 2 | b | | 3 | m | | 3 | c | 3 | m |
| 3 | c | | 3 | n | | 3 | c | 3 | n |
| 3 | d | | 4 | p | | 3 | d | 3 | m |
+-------+ +-------+ | 3 | d | 3 | n |
| NULL | NULL | 4 | p |
+---------------------------+
*/
FROM A RIGHT OUTER JOIN B USING (x)
/*
Table A Table B Result
+-------+ +-------+ +--------------------+
| x | y | * | x | z | = | x | y | z |
+-------+ +-------+ +--------------------+
| 1 | a | | 2 | k | | 2 | b | k |
| 2 | b | | 3 | m | | 3 | c | m |
| 3 | c | | 3 | n | | 3 | c | n |
| 3 | d | | 4 | p | | 3 | d | m |
+-------+ +-------+ | 3 | d | n |
| 4 | NULL | p |
+--------------------+
*/
Example
This query performs a RIGHT JOIN
on the Roster
and TeamMascot
tables.
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster RIGHT JOIN TeamMascot ON Roster.SchoolID = TeamMascot.SchoolID;
/*---------------------------*
| LastName | Mascot |
+---------------------------+
| Adams | Jaguars |
| Buchanan | Lakers |
| Coolidge | Lakers |
| Davis | Knights |
| NULL | Mustangs |
*---------------------------*/
Join conditions
In a join operation, a join condition helps specify how to combine rows in two from_items
to form a single source.
The two types of join conditions are the ON
clause and USING
clause. You must use a join condition when you perform a conditional join operation. You can't use a join condition when you perform a cross join operation.
ON
clause
ON bool_expression
Description
Given a row from each table, if the ON
clause evaluates to TRUE
, the query generates a consolidated row with the result of combining the given rows.
Definitions:
bool_expression
: The boolean expression that specifies the condition for the join. This is frequently a comparison operation or logical combination of comparison operators.Details:
Similarly to CROSS JOIN
, ON
produces a column once for each column in each input table.
A NULL
join condition evaluation is equivalent to a FALSE
evaluation.
If a column-order sensitive operation such as UNION
or SELECT *
is used with the ON
join condition, the resulting table contains all of the columns from the left input in order, and then all of the columns from the right input in order.
Examples
The following examples show how to use the ON
clause:
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3),
B AS ( SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4)
SELECT * FROM A INNER JOIN B ON A.x = B.x;
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3),
B AS ( SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4)
SELECT A.x, B.x FROM A INNER JOIN B ON A.x = B.x;
/*
Table A Table B Result (A.x, B.x)
+---+ +---+ +-------+
| x | * | x | = | x | x |
+---+ +---+ +-------+
| 1 | | 2 | | 2 | 2 |
| 2 | | 3 | | 3 | 3 |
| 3 | | 4 | +-------+
+---+ +---+
*/
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT * FROM A LEFT OUTER JOIN B ON A.x = B.x;
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT A.x, B.x FROM A LEFT OUTER JOIN B ON A.x = B.x;
/*
Table A Table B Result
+------+ +---+ +-------------+
| x | * | x | = | x | x |
+------+ +---+ +-------------+
| 1 | | 2 | | 1 | NULL |
| 2 | | 3 | | 2 | 2 |
| 3 | | 4 | | 3 | 3 |
| NULL | | 5 | | NULL | NULL |
+------+ +---+ +-------------+
*/
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT * FROM A FULL OUTER JOIN B ON A.x = B.x;
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT A.x, B.x FROM A FULL OUTER JOIN B ON A.x = B.x;
/*
Table A Table B Result
+------+ +---+ +-------------+
| x | * | x | = | x | x |
+------+ +---+ +-------------+
| 1 | | 2 | | 1 | NULL |
| 2 | | 3 | | 2 | 2 |
| 3 | | 4 | | 3 | 3 |
| NULL | | 5 | | NULL | NULL |
+------+ +---+ | NULL | 4 |
| NULL | 5 |
+-------------+
*/
USING
clause
USING ( column_name_list )
column_name_list:
column_name[, ...]
Description
When you are joining two tables, USING
performs an equality comparison operation on the columns named in column_name_list
. Each column name in column_name_list
must appear in both input tables. For each pair of rows from the input tables, if the equality comparisons all evaluate to TRUE
, one row is added to the resulting column.
Definitions:
column_name_list
: A list of columns to include in the join condition.column_name
: The column that exists in both of the tables that you are joining.Details:
A NULL
join condition evaluation is equivalent to a FALSE
evaluation.
If a column-order sensitive operation such as UNION
or SELECT *
is used with the USING
join condition, the resulting table contains columns in this order:
column_name_list
in the order they appear in the USING
clause.A column name in the USING
clause must not be qualified by a table name.
If the join is an INNER JOIN
or a LEFT OUTER JOIN
, the output columns are populated from the values in the first table. If the join is a RIGHT OUTER JOIN
, the output columns are populated from the values in the second table. If the join is a FULL OUTER JOIN
, the output columns are populated by coalescing the values from the left and right tables in that order.
Examples
The following example shows how to use the USING
clause with one column name in the column name list:
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 9 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 9 UNION ALL SELECT 9 UNION ALL SELECT 5)
SELECT * FROM A INNER JOIN B USING (x);
/*
Table A Table B Result
+------+ +---+ +---+
| x | * | x | = | x |
+------+ +---+ +---+
| 1 | | 2 | | 2 |
| 2 | | 9 | | 9 |
| 9 | | 9 | | 9 |
| NULL | | 5 | +---+
+------+ +---+
*/
The following example shows how to use the USING
clause with multiple column names in the column name list:
WITH
A AS (
SELECT 1 as x, 15 as y UNION ALL
SELECT 2, 10 UNION ALL
SELECT 9, 16 UNION ALL
SELECT NULL, 12),
B AS (
SELECT 2 as x, 10 as y UNION ALL
SELECT 9, 17 UNION ALL
SELECT 9, 16 UNION ALL
SELECT 5, 15)
SELECT * FROM A INNER JOIN B USING (x, y);
/*
Table A Table B Result
+-----------+ +---------+ +---------+
| x | y | * | x | y | = | x | y |
+-----------+ +---------+ +---------+
| 1 | 15 | | 2 | 10 | | 2 | 10 |
| 2 | 10 | | 9 | 17 | | 9 | 16 |
| 9 | 16 | | 9 | 16 | +---------+
| NULL | 12 | | 5 | 15 |
+-----------+ +---------+
*/
The following examples show additional ways in which to use the USING
clause with one column name in the column name list:
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 9 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 9 UNION ALL SELECT 9 UNION ALL SELECT 5)
SELECT x, A.x, B.x FROM A INNER JOIN B USING (x)
/*
Table A Table B Result
+------+ +---+ +--------------------+
| x | * | x | = | x | A.x | B.x |
+------+ +---+ +--------------------+
| 1 | | 2 | | 2 | 2 | 2 |
| 2 | | 9 | | 9 | 9 | 9 |
| 9 | | 9 | | 9 | 9 | 9 |
| NULL | | 5 | +--------------------+
+------+ +---+
*/
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 9 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 9 UNION ALL SELECT 9 UNION ALL SELECT 5)
SELECT x, A.x, B.x FROM A LEFT OUTER JOIN B USING (x)
/*
Table A Table B Result
+------+ +---+ +--------------------+
| x | * | x | = | x | A.x | B.x |
+------+ +---+ +--------------------+
| 1 | | 2 | | 1 | 1 | NULL |
| 2 | | 9 | | 2 | 2 | 2 |
| 9 | | 9 | | 9 | 9 | 9 |
| NULL | | 5 | | 9 | 9 | 9 |
+------+ +---+ | NULL | NULL | NULL |
+--------------------+
*/
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 2 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 9 UNION ALL SELECT 9 UNION ALL SELECT 5)
SELECT x, A.x, B.x FROM A RIGHT OUTER JOIN B USING (x)
/*
Table A Table B Result
+------+ +---+ +--------------------+
| x | * | x | = | x | A.x | B.x |
+------+ +---+ +--------------------+
| 1 | | 2 | | 2 | 2 | 2 |
| 2 | | 9 | | 2 | 2 | 2 |
| 2 | | 9 | | 9 | NULL | 9 |
| NULL | | 5 | | 9 | NULL | 9 |
+------+ +---+ | 5 | NULL | 5 |
+--------------------+
*/
WITH
A AS ( SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 2 UNION ALL SELECT NULL),
B AS ( SELECT 2 as x UNION ALL SELECT 9 UNION ALL SELECT 9 UNION ALL SELECT 5)
SELECT x, A.x, B.x FROM A FULL OUTER JOIN B USING (x);
/*
Table A Table B Result
+------+ +---+ +--------------------+
| x | * | x | = | x | A.x | B.x |
+------+ +---+ +--------------------+
| 1 | | 2 | | 1 | 1 | NULL |
| 2 | | 9 | | 2 | 2 | 2 |
| 2 | | 9 | | 2 | 2 | 2 |
| NULL | | 5 | | NULL | NULL | NULL |
+------+ +---+ | 9 | NULL | 9 |
| 9 | NULL | 9 |
| 5 | NULL | 5 |
+--------------------+
*/
The following example shows how to use the USING
clause with only some column names in the column name list.
WITH
A AS (
SELECT 1 as x, 15 as y UNION ALL
SELECT 2, 10 UNION ALL
SELECT 9, 16 UNION ALL
SELECT NULL, 12),
B AS (
SELECT 2 as x, 10 as y UNION ALL
SELECT 9, 17 UNION ALL
SELECT 9, 16 UNION ALL
SELECT 5, 15)
SELECT * FROM A INNER JOIN B USING (x);
/*
Table A Table B Result
+-----------+ +---------+ +-----------------+
| x | y | * | x | y | = | x | A.y | B.y |
+-----------+ +---------+ +-----------------+
| 1 | 15 | | 2 | 10 | | 2 | 10 | 10 |
| 2 | 10 | | 9 | 17 | | 9 | 16 | 17 |
| 9 | 16 | | 9 | 16 | | 9 | 16 | 16 |
| NULL | 12 | | 5 | 15 | +-----------------+
+-----------+ +---------+
*/
The following query performs an INNER JOIN
on the Roster
and TeamMascot
table. The query returns the rows from Roster
and TeamMascot
where Roster.SchoolID
is the same as TeamMascot.SchoolID
. The results include a single SchoolID
column.
SELECT * FROM Roster INNER JOIN TeamMascot USING (SchoolID);
/*----------------------------------------*
| SchoolID | LastName | Mascot |
+----------------------------------------+
| 50 | Adams | Jaguars |
| 52 | Buchanan | Lakers |
| 52 | Coolidge | Lakers |
| 51 | Davis | Knights |
*----------------------------------------*/
ON
and USING
equivalency
The ON
and USING
join conditions aren't equivalent, but they share some rules and sometimes they can produce similar results.
In the following examples, observe what is returned when all rows are produced for inner and outer joins. Also, look at how each join condition handles NULL
values.
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4)
SELECT * FROM A INNER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4)
SELECT * FROM A INNER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+---+ +---+ +-------+ +---+
| x | * | x | = | x | x | | x |
+---+ +---+ +-------+ +---+
| 1 | | 2 | | 2 | 2 | | 2 |
| 2 | | 3 | | 3 | 3 | | 3 |
| 3 | | 4 | +-------+ +---+
+---+ +---+
*/
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT * FROM A LEFT OUTER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT * FROM A LEFT OUTER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+------+ +---+ +-------------+ +------+
| x | * | x | = | x | x | | x |
+------+ +---+ +-------------+ +------+
| 1 | | 2 | | 1 | NULL | | 1 |
| 2 | | 3 | | 2 | 2 | | 2 |
| 3 | | 4 | | 3 | 3 | | 3 |
| NULL | | 5 | | NULL | NULL | | NULL |
+------+ +---+ +-------------+ +------+
*/
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4)
SELECT * FROM A FULL OUTER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4)
SELECT * FROM A FULL OUTER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+---+ +---+ +-------------+ +---+
| x | * | x | = | x | x | | x |
+---+ +---+ +-------------+ +---+
| 1 | | 2 | | 1 | NULL | | 1 |
| 2 | | 3 | | 2 | 2 | | 2 |
| 3 | | 4 | | 3 | 3 | | 3 |
+---+ +---+ | NULL | 4 | | 4 |
+-------------+ +---+
*/
Although ON
and USING
aren't equivalent, they can return the same results in some situations if you specify the columns you want to return.
In the following examples, observe what is returned when a specific row is produced for inner and outer joins. Also, look at how each join condition handles NULL
values.
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT A.x FROM A INNER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT x FROM A INNER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+------+ +---+ +---+ +---+
| x | * | x | = | x | | x |
+------+ +---+ +---+ +---+
| 1 | | 2 | | 2 | | 2 |
| 2 | | 3 | | 3 | | 3 |
| 3 | | 4 | +---+ +---+
| NULL | | 5 |
+------+ +---+
*/
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT A.x FROM A LEFT OUTER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT x FROM A LEFT OUTER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+------+ +---+ +------+ +------+
| x | * | x | = | x | | x |
+------+ +---+ +------+ +------+
| 1 | | 2 | | 1 | | 1 |
| 2 | | 3 | | 2 | | 2 |
| 3 | | 4 | | 3 | | 3 |
| NULL | | 5 | | NULL | | NULL |
+------+ +---+ +------+ +------+
*/
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT A.x FROM A FULL OUTER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT x FROM A FULL OUTER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+------+ +---+ +------+ +------+
| x | * | x | = | x | | x |
+------+ +---+ +------+ +------+
| 1 | | 2 | | 1 | | 1 |
| 2 | | 3 | | 2 | | 2 |
| 3 | | 4 | | 3 | | 3 |
| NULL | | 5 | | NULL | | NULL |
+------+ +---+ | NULL | | 4 |
| NULL | | 5 |
+------+ +------+
*/
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT B.x FROM A FULL OUTER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT x FROM A FULL OUTER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+------+ +---+ +------+ +------+
| x | * | x | = | x | | x |
+------+ +---+ +------+ +------+
| 1 | | 2 | | 2 | | 1 |
| 2 | | 3 | | 3 | | 2 |
| 3 | | 4 | | NULL | | 3 |
| NULL | | 5 | | NULL | | NULL |
+------+ +---+ | 4 | | 4 |
| 5 | | 5 |
+------+ +------+
*/
In the following example, observe what is returned when COALESCE
is used with the ON
clause. It provides the same results as a query with the USING
clause.
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT COALESCE(A.x, B.x) FROM A FULL OUTER JOIN B ON A.x = B.x;
WITH
A AS (SELECT 1 as x UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT NULL),
B AS (SELECT 2 as x UNION ALL SELECT 3 UNION ALL SELECT 4 UNION ALL SELECT 5)
SELECT x FROM A FULL OUTER JOIN B USING (x);
/*
Table A Table B Result ON Result USING
+------+ +---+ +------+ +------+
| x | * | x | = | x | | x |
+------+ +---+ +------+ +------+
| 1 | | 2 | | 1 | | 1 |
| 2 | | 3 | | 2 | | 2 |
| 3 | | 4 | | 3 | | 3 |
| NULL | | 5 | | NULL | | NULL |
+------+ +---+ | 4 | | 4 |
| 5 | | 5 |
+------+ +------+
*/
Join operations in a sequence
The FROM
clause can contain multiple JOIN
operations in a sequence. JOIN
s are bound from left to right. For example:
FROM A JOIN B USING (x) JOIN C USING (x)
-- A JOIN B USING (x) = result_1
-- result_1 JOIN C USING (x) = result_2
-- result_2 = return value
You can also insert parentheses to group JOIN
s:
FROM ( (A JOIN B USING (x)) JOIN C USING (x) )
-- A JOIN B USING (x) = result_1
-- result_1 JOIN C USING (x) = result_2
-- result_2 = return value
With parentheses, you can group JOIN
s so that they are bound in a different order:
FROM ( A JOIN (B JOIN C USING (x)) USING (x) )
-- B JOIN C USING (x) = result_1
-- A JOIN result_1 = result_2
-- result_2 = return value
When comma cross joins are present in a query with a sequence of JOINs, they group from left to right like other JOIN
types:
FROM A JOIN B USING (x) JOIN C USING (x), D
-- A JOIN B USING (x) = result_1
-- result_1 JOIN C USING (x) = result_2
-- result_2 CROSS JOIN D = return value
There can't be a RIGHT JOIN
or FULL JOIN
after a comma cross join unless it's parenthesized:
FROM A, B RIGHT JOIN C ON TRUE // INVALID
FROM A, B FULL JOIN C ON TRUE // INVALID
FROM A, B JOIN C ON TRUE // VALID
FROM A, (B RIGHT JOIN C ON TRUE) // VALID
FROM A, (B FULL JOIN C ON TRUE) // VALID
A join operation is correlated when the right from_item
contains a reference to at least one range variable or column name introduced by the left from_item
.
In a correlated join operation, rows from the right from_item
are determined by a row from the left from_item
. Consequently, RIGHT OUTER
and FULL OUTER
joins can't be correlated because right from_item
rows can't be determined in the case when there is no row from the left from_item
.
All correlated join operations must reference an array in the right from_item
.
This is a conceptual example of a correlated join operation that includes a correlated subquery:
FROM A JOIN UNNEST(ARRAY(SELECT AS STRUCT * FROM B WHERE A.ID = B.ID)) AS C
from_item
: A
from_item
: UNNEST(...) AS C
(SELECT AS STRUCT * FROM B WHERE A.ID = B.ID)
This is another conceptual example of a correlated join operation. array_of_IDs
is part of the left from_item
but is referenced in the right from_item
.
FROM A JOIN UNNEST(A.array_of_IDs) AS C
The UNNEST
operator can be explicit or implicit. These are both allowed:
FROM A JOIN UNNEST(A.array_of_IDs) AS IDs
FROM A JOIN A.array_of_IDs AS IDs
In a correlated join operation, the right from_item
is re-evaluated against each distinct row from the left from_item
. In the following conceptual example, the correlated join operation first evaluates A
and B
, then A
and C
:
FROM
A
JOIN
UNNEST(ARRAY(SELECT AS STRUCT * FROM B WHERE A.ID = B.ID)) AS C
ON A.Name = C.Name
Caveats
LEFT JOIN
, when the input table on the right side is empty for some row from the left side, it's as if no rows from the right side satisfied the join condition in a regular LEFT JOIN
. When there are no joining rows, a row with NULL
values for all columns on the right side is generated to join with the row from the left side.CROSS JOIN
, when the input table on the right side is empty for some row from the left side, it's as if no rows from the right side satisfied the join condition in a regular correlated INNER JOIN
. This means that the row is dropped from the results.Examples
This is an example of a correlated join, using the Roster and PlayerStats tables:
SELECT *
FROM
Roster
JOIN
UNNEST(
ARRAY(
SELECT AS STRUCT *
FROM PlayerStats
WHERE PlayerStats.OpponentID = Roster.SchoolID
)) AS PlayerMatches
ON PlayerMatches.LastName = 'Buchanan'
/*------------+----------+----------+------------+--------------*
| LastName | SchoolID | LastName | OpponentID | PointsScored |
+------------+----------+----------+------------+--------------+
| Adams | 50 | Buchanan | 50 | 13 |
| Eisenhower | 77 | Buchanan | 77 | 0 |
*------------+----------+----------+------------+--------------*/
A common pattern for a correlated LEFT JOIN
is to have an UNNEST
operation on the right side that references an array from some column introduced by input on the left side. For rows where that array is empty or NULL
, the UNNEST
operation produces no rows on the right input. In that case, a row with a NULL
entry in each column of the right input is created to join with the row from the left input. For example:
SELECT A.name, item, ARRAY_LENGTH(A.items) item_count_for_name
FROM
UNNEST(
[
STRUCT(
'first' AS name,
[1, 2, 3, 4] AS items),
STRUCT(
'second' AS name,
[] AS items)]) AS A
LEFT JOIN
A.items AS item;
/*--------+------+---------------------*
| name | item | item_count_for_name |
+--------+------+---------------------+
| first | 1 | 4 |
| first | 2 | 4 |
| first | 3 | 4 |
| first | 4 | 4 |
| second | NULL | 0 |
*--------+------+---------------------*/
In the case of a correlated INNER JOIN
or CROSS JOIN
, when the input on the right side is empty for some row from the left side, the final row is dropped from the results. For example:
SELECT A.name, item
FROM
UNNEST(
[
STRUCT(
'first' AS name,
[1, 2, 3, 4] AS items),
STRUCT(
'second' AS name,
[] AS items)]) AS A
INNER JOIN
A.items AS item;
/*-------+------*
| name | item |
+-------+------+
| first | 1 |
| first | 2 |
| first | 3 |
| first | 4 |
*-------+------*/
WHERE
clause
WHERE bool_expression
The WHERE
clause filters the results of the FROM
clause.
Only rows whose bool_expression
evaluates to TRUE
are included. Rows whose bool_expression
evaluates to NULL
or FALSE
are discarded.
The evaluation of a query with a WHERE
clause is typically completed in this order:
FROM
WHERE
GROUP BY
and aggregationHAVING
DISTINCT
ORDER BY
LIMIT
Evaluation order doesn't always match syntax order.
The WHERE
clause only references columns available via the FROM
clause; it can't reference SELECT
list aliases.
Examples
This query returns returns all rows from the Roster
table where the SchoolID
column has the value 52
:
SELECT * FROM Roster
WHERE SchoolID = 52;
The bool_expression
can contain multiple sub-conditions:
SELECT * FROM Roster
WHERE STARTS_WITH(LastName, "Mc") OR STARTS_WITH(LastName, "Mac");
Expressions in an INNER JOIN
have an equivalent expression in the WHERE
clause. For example, a query using INNER
JOIN
and ON
has an equivalent expression using CROSS JOIN
and WHERE
. For example, the following two queries are equivalent:
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster INNER JOIN TeamMascot
ON Roster.SchoolID = TeamMascot.SchoolID;
SELECT Roster.LastName, TeamMascot.Mascot
FROM Roster CROSS JOIN TeamMascot
WHERE Roster.SchoolID = TeamMascot.SchoolID;
GROUP BY
clause
GROUP BY groupable_items
Description
The GROUP BY
clause groups together rows in a table that share common values for certain columns. For a group of rows in the source table with non-distinct values, the GROUP BY
clause aggregates them into a single combined row. This clause is commonly used when aggregate functions are present in the SELECT
list, or to eliminate redundancy in the output.
Definitions
groupable_items
: Group rows in a table that share common values for certain columns. To learn more, see Group rows by groupable items.GROUP BY groupable_item[, ...] groupable_item: { value | value_alias | column_ordinal }
Description
The GROUP BY
clause can include groupable expressions and their ordinals.
Definitions
value
: An expression that represents a non-distinct, groupable value. To learn more, see Group rows by values.value_alias
: An alias for value
. To learn more, see Group rows by values.column_ordinal
: An INT64
value that represents the ordinal assigned to a groupable expression in the SELECT
list. To learn more, see Group rows by column ordinals.The GROUP BY
clause can group rows in a table with non-distinct values in the GROUP BY
clause. For example:
WITH PlayerStats AS (
SELECT 'Adams' as LastName, 'Noam' as FirstName, 3 as PointsScored UNION ALL
SELECT 'Buchanan', 'Jie', 0 UNION ALL
SELECT 'Coolidge', 'Kiran', 1 UNION ALL
SELECT 'Adams', 'Noam', 4 UNION ALL
SELECT 'Buchanan', 'Jie', 13)
SELECT SUM(PointsScored) AS total_points, LastName
FROM PlayerStats
GROUP BY LastName;
/*--------------+----------+
| total_points | LastName |
+--------------+----------+
| 7 | Adams |
| 13 | Buchanan |
| 1 | Coolidge |
+--------------+----------*/
GROUP BY
clauses may also refer to aliases. If a query contains aliases in the SELECT
clause, those aliases override names in the corresponding FROM
clause. For example:
WITH PlayerStats AS (
SELECT 'Adams' as LastName, 'Noam' as FirstName, 3 as PointsScored UNION ALL
SELECT 'Buchanan', 'Jie', 0 UNION ALL
SELECT 'Coolidge', 'Kiran', 1 UNION ALL
SELECT 'Adams', 'Noam', 4 UNION ALL
SELECT 'Buchanan', 'Jie', 13)
SELECT SUM(PointsScored) AS total_points, LastName AS last_name
FROM PlayerStats
GROUP BY last_name;
/*--------------+-----------+
| total_points | last_name |
+--------------+-----------+
| 7 | Adams |
| 13 | Buchanan |
| 1 | Coolidge |
+--------------+-----------*/
To learn more about the data types that are supported for values in the GROUP BY
clause, see Groupable data types.
The GROUP BY
clause can refer to expression names in the SELECT
list. The GROUP BY
clause also allows ordinal references to expressions in the SELECT
list, using integer values. 1
refers to the first value in the SELECT
list, 2
the second, and so forth. The value list can combine ordinals and value names. The following queries are equivalent:
WITH PlayerStats AS (
SELECT 'Adams' as LastName, 'Noam' as FirstName, 3 as PointsScored UNION ALL
SELECT 'Buchanan', 'Jie', 0 UNION ALL
SELECT 'Coolidge', 'Kiran', 1 UNION ALL
SELECT 'Adams', 'Noam', 4 UNION ALL
SELECT 'Buchanan', 'Jie', 13)
SELECT SUM(PointsScored) AS total_points, LastName, FirstName
FROM PlayerStats
GROUP BY LastName, FirstName;
/*--------------+----------+-----------+
| total_points | LastName | FirstName |
+--------------+----------+-----------+
| 7 | Adams | Noam |
| 13 | Buchanan | Jie |
| 1 | Coolidge | Kiran |
+--------------+----------+-----------*/
WITH PlayerStats AS (
SELECT 'Adams' as LastName, 'Noam' as FirstName, 3 as PointsScored UNION ALL
SELECT 'Buchanan', 'Jie', 0 UNION ALL
SELECT 'Coolidge', 'Kiran', 1 UNION ALL
SELECT 'Adams', 'Noam', 4 UNION ALL
SELECT 'Buchanan', 'Jie', 13)
SELECT SUM(PointsScored) AS total_points, LastName, FirstName
FROM PlayerStats
GROUP BY 2, 3;
/*--------------+----------+-----------+
| total_points | LastName | FirstName |
+--------------+----------+-----------+
| 7 | Adams | Noam |
| 13 | Buchanan | Jie |
| 1 | Coolidge | Kiran |
+--------------+----------+-----------*/
HAVING
clause
HAVING bool_expression
The HAVING
clause filters the results produced by GROUP BY
or aggregation. GROUP BY
or aggregation must be present in the query. If aggregation is present, the HAVING
clause is evaluated once for every aggregated row in the result set.
Only rows whose bool_expression
evaluates to TRUE
are included. Rows whose bool_expression
evaluates to NULL
or FALSE
are discarded.
The evaluation of a query with a HAVING
clause is typically completed in this order:
FROM
WHERE
GROUP BY
and aggregationHAVING
DISTINCT
ORDER BY
LIMIT
Evaluation order doesn't always match syntax order.
The HAVING
clause references columns available via the FROM
clause, as well as SELECT
list aliases. Expressions referenced in the HAVING
clause must either appear in the GROUP BY
clause or they must be the result of an aggregate function:
SELECT LastName
FROM Roster
GROUP BY LastName
HAVING SUM(PointsScored) > 15;
If a query contains aliases in the SELECT
clause, those aliases override names in a FROM
clause.
SELECT LastName, SUM(PointsScored) AS ps
FROM Roster
GROUP BY LastName
HAVING ps > 0;
Mandatory aggregation
Aggregation doesn't have to be present in the HAVING
clause itself, but aggregation must be present in at least one of the following forms:
SELECT
list.
SELECT LastName, SUM(PointsScored) AS total
FROM PlayerStats
GROUP BY LastName
HAVING total > 15;
Aggregation function in the HAVING
clause.
SELECT LastName
FROM PlayerStats
GROUP BY LastName
HAVING SUM(PointsScored) > 15;
Aggregation in both the SELECT
list and HAVING
clause.
When aggregation functions are present in both the SELECT
list and HAVING
clause, the aggregation functions and the columns they reference don't need to be the same. In the example below, the two aggregation functions, COUNT()
and SUM()
, are different and also use different columns.
SELECT LastName, COUNT(*)
FROM PlayerStats
GROUP BY LastName
HAVING SUM(PointsScored) > 15;
ORDER BY
clause
ORDER BY expression [COLLATE collation_specification] [{ ASC | DESC }] [, ...] collation_specification: language_tag[:collation_attribute]
The ORDER BY
clause specifies a column or expression as the sort criterion for the result set. If an ORDER BY
clause isn't present, the order of the results of a query isn't defined. Column aliases from a FROM
clause or SELECT
list are allowed. If a query contains aliases in the SELECT
clause, those aliases override names in the corresponding FROM
clause. The data type of expression
must be orderable.
Optional Clauses
COLLATE
: You can use the COLLATE
clause to refine how data is ordered by an ORDER BY
clause. Collation refers to a set of rules that determine how strings are compared according to the conventions and standards of a particular written language, region, or country. These rules might define the correct character sequence, with options for specifying case-insensitivity. You can use COLLATE
only on columns of type STRING
.
collation_specification
represents the collation specification for the COLLATE
clause. The collation specification can be a string literal or a query parameter. To learn more see collation specification details.
ASC | DESC
: Sort the results in ascending or descending order of expression
values. ASC
is the default value.
Examples
Use the default sort order (ascending).
SELECT x, y
FROM (SELECT 1 AS x, true AS y UNION ALL
SELECT 9, true)
ORDER BY x;
/*------+-------*
| x | y |
+------+-------+
| 1 | true |
| 9 | true |
*------+-------*/
Use descending sort order.
SELECT x, y
FROM (SELECT 1 AS x, true AS y UNION ALL
SELECT 9, true)
ORDER BY x DESC;
/*------+-------*
| x | y |
+------+-------+
| 9 | true |
| 1 | true |
*------+-------*/
It's possible to order by multiple columns. In the example below, the result set is ordered first by SchoolID
and then by LastName
:
SELECT LastName, PointsScored, OpponentID
FROM PlayerStats
ORDER BY SchoolID, LastName;
When used in conjunction with set operators, the ORDER BY
clause applies to the result set of the entire query; it doesn't apply only to the closest SELECT
statement. For this reason, it can be helpful (though it isn't required) to use parentheses to show the scope of the ORDER BY
.
This query without parentheses:
SELECT * FROM Roster
UNION ALL
SELECT * FROM TeamMascot
ORDER BY SchoolID;
is equivalent to this query with parentheses:
( SELECT * FROM Roster
UNION ALL
SELECT * FROM TeamMascot )
ORDER BY SchoolID;
but isn't equivalent to this query, where the ORDER BY
clause applies only to the second SELECT
statement:
SELECT * FROM Roster
UNION ALL
( SELECT * FROM TeamMascot
ORDER BY SchoolID );
You can also use integer literals as column references in ORDER BY
clauses. An integer literal becomes an ordinal (for example, counting starts at 1) into the SELECT
list.
Example - the following two queries are equivalent:
SELECT SUM(PointsScored), LastName
FROM PlayerStats
GROUP BY LastName
ORDER BY LastName;
SELECT SUM(PointsScored), LastName
FROM PlayerStats
GROUP BY 2
ORDER BY 2;
Collate results using English - Canada:
SELECT Place
FROM Locations
ORDER BY Place COLLATE "en_CA"
Collate results using a parameter:
#@collate_param = "arg_EG"
SELECT Place
FROM Locations
ORDER BY Place COLLATE @collate_param
Using multiple COLLATE
clauses in a statement:
SELECT APlace, BPlace, CPlace
FROM Locations
ORDER BY APlace COLLATE "en_US" ASC,
BPlace COLLATE "ar_EG" DESC,
CPlace COLLATE "en" DESC
Case insensitive collation:
SELECT Place
FROM Locations
ORDER BY Place COLLATE "en_US:ci"
Default Unicode case-insensitive collation:
SELECT Place
FROM Locations
ORDER BY Place COLLATE "und:ci"
Set operators
query_expr { UNION { ALL | DISTINCT } | INTERSECT { ALL | DISTINCT } | EXCEPT { ALL | DISTINCT } } query_expr
Set operators combine or filter results from two or more input queries into a single result set.
Definitions
query_expr
: One of two input queries whose results are combined or filtered into a single result set.UNION
: Returns the combined results of the left and right input queries. Values in columns that are matched by position are concatenated vertically.INTERSECT
: Returns rows that are found in the results of both the left and right input queries.EXCEPT
: Returns rows from the left input query that aren't present in the right input query.ALL
: Executes the set operation on all rows.DISTINCT
: Excludes duplicate rows in the set operation.Positional column matching
Other column-related rules
UNION ALL
, all column types must support equality comparison.Parenthesized set operators
UNION ALL
and UNION DISTINCT
are considered different.EXCEPT
set operations, for example, query results can vary depending on the operation grouping.The following examples illustrate the use of parentheses with set operations:
-- Same set operations, no parentheses.
query1
UNION ALL
query2
UNION ALL
query3;
-- Different set operations, parentheses needed.
query1
UNION ALL
(
query2
UNION DISTINCT
query3
);
-- Invalid
query1
UNION ALL
query2
UNION DISTINCT
query3;
-- Same set operations, no parentheses.
query1
EXCEPT ALL
query2
EXCEPT ALL
query3;
-- Equivalent query with optional parentheses, returns same results.
(
query1
EXCEPT ALL
query2
)
EXCEPT ALL
query3;
-- Different execution order with a subquery, parentheses needed.
query1
EXCEPT ALL
(
query2
EXCEPT ALL
query3
);
Set operator behavior with duplicate rows
Consider a given row R
that appears exactly m
times in the first input query and n
times in the second input query, where m >= 0
and n >= 0
:
UNION ALL
, row R
appears exactly m + n
times in the result.INTERSECT ALL
, row R
appears exactly MIN(m, n)
times in the result.EXCEPT ALL
, row R
appears exactly MAX(m - n, 0)
times in the result.UNION DISTINCT
, the DISTINCT
is computed after the UNION
is computed, so row R
appears exactly one time.INTERSECT DISTINCT
, row R
appears once in the output if m > 0
and n > 0
.EXCEPT DISTINCT
, row R
appears once in the output if m > 0
and n = 0
.UNION
The UNION
operator returns the combined results of the left and right input queries. Columns are matched according to the rules described previously and rows are concatenated vertically.
Examples
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3]) AS number
UNION ALL
SELECT 1;
/*--------+
| number |
+--------+
| 1 |
| 2 |
| 3 |
| 1 |
+--------*/
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3]) AS number
UNION DISTINCT
SELECT 1;
/*--------+
| number |
+--------+
| 1 |
| 2 |
| 3 |
+--------*/
The following example shows multiple chained operators:
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3]) AS number
UNION DISTINCT
SELECT 1
UNION DISTINCT
SELECT 2;
/*--------+
| number |
+--------+
| 1 |
| 2 |
| 3 |
+--------*/
INTERSECT
The INTERSECT
operator returns rows that are found in the results of both the left and right input queries.
Examples
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
INTERSECT ALL
SELECT * FROM UNNEST(ARRAY<INT64>[2, 3, 3, 5]) AS number;
/*--------+
| number |
+--------+
| 2 |
| 3 |
| 3 |
+--------*/
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
INTERSECT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[2, 3, 3, 5]) AS number;
/*--------+
| number |
+--------+
| 2 |
| 3 |
+--------*/
The following example shows multiple chained operations:
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
INTERSECT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[2, 3, 3, 5]) AS number
INTERSECT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[3, 3, 4, 5]) AS number;
/*--------+
| number |
+--------+
| 3 |
+--------*/
EXCEPT
The EXCEPT
operator returns rows from the left input query that aren't present in the right input query.
Examples
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
EXCEPT ALL
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2]) AS number;
/*--------+
| number |
+--------+
| 3 |
| 3 |
| 4 |
+--------*/
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
EXCEPT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2]) AS number;
/*--------+
| number |
+--------+
| 3 |
| 4 |
+--------*/
The following example shows multiple chained operations:
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
EXCEPT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2]) AS number
EXCEPT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[1, 4]) AS number;
/*--------+
| number |
+--------+
| 3 |
+--------*/
The following example modifies the execution behavior of the set operations. The first input query is used against the result of the last two input queries instead of the values of the last two queries individually. In this example, the EXCEPT
result of the last two input queries is 2
. Therefore, the EXCEPT
results of the entire query are any values other than 2
in the first input query.
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2, 3, 3, 4]) AS number
EXCEPT DISTINCT
(
SELECT * FROM UNNEST(ARRAY<INT64>[1, 2]) AS number
EXCEPT DISTINCT
SELECT * FROM UNNEST(ARRAY<INT64>[1, 4]) AS number
);
/*--------+
| number |
+--------+
| 1 |
| 3 |
| 4 |
+--------*/
LIMIT
and OFFSET
clause
LIMIT count [ OFFSET skip_rows ]
Limits the number of rows to return in a query. Optionally includes the ability to skip over rows.
Definitions
LIMIT
: Limits the number of rows to produce.
count
is an INT64
constant expression that represents the non-negative, non-NULL
limit. No more than count
rows are produced. LIMIT 0
returns 0 rows.
If there is a set operation, LIMIT
is applied after the set operation is evaluated.
OFFSET
: Skips a specific number of rows before applying LIMIT
.
skip_rows
is an INT64
constant expression that represents the non-negative, non-NULL
number of rows to skip.
Details
The rows that are returned by LIMIT
and OFFSET
have undefined order unless these clauses are used after ORDER BY
.
A constant expression can be represented by a general expression, literal, or parameter value.
Note: Although theLIMIT
clause limits the rows that a query produces, it doesn't limit the amount of data processed by that query.
Examples
SELECT *
FROM UNNEST(ARRAY<STRING>['a', 'b', 'c', 'd', 'e']) AS letter
ORDER BY letter ASC LIMIT 2;
/*---------*
| letter |
+---------+
| a |
| b |
*---------*/
SELECT *
FROM UNNEST(ARRAY<STRING>['a', 'b', 'c', 'd', 'e']) AS letter
ORDER BY letter ASC LIMIT 3 OFFSET 1;
/*---------*
| letter |
+---------+
| b |
| c |
| d |
*---------*/
FOR UPDATE
clause
SELECT expression
FOR UPDATE;
UPDATE
expression;
When you use the SELECT
query to scan a table, add a FOR UPDATE
clause to enable exclusive locks at the row-and-column granularity level, otherwise known as cell-level. The lock remains in place for the lifetime of the read-write transaction. During this time, the FOR UPDATE
clause prevents other transactions from modifying the locked cells until the current transaction completes.
Example:
SELECT MarketingBudget
FROM Albums
WHERE SingerId = 1 and AlbumId = 1
FOR UPDATE;
UPDATE Albums
SET MarketingBudget = 100000
WHERE SingerId = 1 and AlbumId = 1;
You can't use the FOR UPDATE
clause in the following ways:
LOCK_SCANNED_RANGES
hintFor more information, see Use SELECT FOR UPDATE.
WITH
clause
WITH cte[, ...]
A WITH
clause contains one or more common table expressions (CTEs). A CTE acts like a temporary table that you can reference within a single query expression. Each CTE binds the results of a subquery to a table name, which can be used elsewhere in the same query expression, but rules apply.
cte: cte_name AS ( query_expr )
A common table expression (CTE) contains a subquery and a name associated with the CTE.
WITH
clause, but rules apply.In this example, a WITH
clause defines two CTEs that are referenced in the related set operation, where one CTE is referenced by each of the set operation's input query expressions:
WITH subQ1 AS (SELECT SchoolID FROM Roster),
subQ2 AS (SELECT OpponentID FROM PlayerStats)
SELECT * FROM subQ1
UNION ALL
SELECT * FROM subQ2
WITH
isn't supported in a subquery. This returns an error:
SELECT account
FROM (
WITH result AS (SELECT * FROM NPCs)
SELECT *
FROM result)
You can use a FOR UPDATE
clause in a CTE subquery to lock the scanned range of the subquery.
The following query exclusively locks col1
and col2
in table t
.
WITH t1 AS (SELECT col1, col2 FROM t FOR UPDATE)
SELECT * FROM t1;
However, a FOR UPDATE
clause in the outer query won't propagate into the CTE. In the following example, an exclusive lock won't apply to any cells in table t
.
WITH t2 AS (SELECT col1, col2 FROM t)
SELECT * FROM t2 FOR UPDATE;
WITH
clause isn't supported in DML statements.
Temporary tables defined by the WITH
clause are stored in memory. Spanner dynamically allocates memory for all temporary tables created by a query. If the available resources aren't sufficient then the query will fail.
Common table expressions (CTEs) can be referenced inside the query expression that contains the WITH
clause.
Here are some general rules and constraints to consider when working with CTEs:
WITH
clause must have a unique name.WITH
clause is only visible to other CTEs in the same WITH
clause that were defined after it.References between common table expressions (CTEs) in the WITH
clause can go backward but not forward.
This is what happens when you have two CTEs that reference themselves or each other in a WITH
clause. Assume that A
is the first CTE and B
is the second CTE in the clause:
This produces an error. A
can't reference itself because self-references aren't supported:
WITH
A AS (SELECT 1 AS n UNION ALL (SELECT n + 1 FROM A WHERE n < 3))
SELECT * FROM A
-- Error
This produces an error. A
can't reference B
because references between CTEs can go backwards but not forwards:
WITH
A AS (SELECT * FROM B),
B AS (SELECT 1 AS n)
SELECT * FROM B
-- Error
B
can reference A
because references between CTEs can go backwards:
WITH
A AS (SELECT 1 AS n),
B AS (SELECT * FROM A)
SELECT * FROM B
/*---*
| n |
+---+
| 1 |
*---*/
This produces an error. A
and B
reference each other, which creates a cycle:
WITH
A AS (SELECT * FROM B),
B AS (SELECT * FROM A)
SELECT * FROM B
-- Error
Using aliases
An alias is a temporary name given to a table, column, or expression present in a query. You can introduce explicit aliases in the SELECT
list or FROM
clause, or GoogleSQL infers an implicit alias for some expressions. Expressions with neither an explicit nor implicit alias are anonymous and the query can't reference them by name.
You can introduce explicit aliases in either the FROM
clause or the SELECT
list.
In a FROM
clause, you can introduce explicit aliases for any item, including tables, arrays, subqueries, and UNNEST
clauses, using [AS] alias
. The AS
keyword is optional.
Example:
SELECT s.FirstName, s2.SongName
FROM Singers AS s, (SELECT * FROM Songs) AS s2;
You can introduce explicit aliases for any expression in the SELECT
list using [AS] alias
. The AS
keyword is optional.
Example:
SELECT s.FirstName AS name, LOWER(s.FirstName) AS lname
FROM Singers s;
Implicit aliases
In the SELECT
list, if there is an expression that doesn't have an explicit alias, GoogleSQL assigns an implicit alias according to the following rules. There can be multiple columns with the same alias in the SELECT
list.
SELECT abc
implies AS abc
.SELECT abc.def.ghi
implies AS ghi
.SELECT (struct_function()).fname
implies AS fname
.In all other cases, there is no implicit alias, so the column is anonymous and can't be referenced by name. The data from that column will still be returned and the displayed query results may have a generated label for that column, but the label can't be used like an alias.
In a FROM
clause, from_item
s aren't required to have an alias. The following rules apply:
FROM abc
implies AS abc
.FROM abc.def.ghi
implies AS ghi
WITH OFFSET
has the implicit alias offset
.FROM UNNEST(x)
doesn't have an implicit alias.After you introduce an explicit alias in a query, there are restrictions on where else in the query you can reference that alias. These restrictions on alias visibility are the result of GoogleSQL name scoping rules.
Visibility in theFROM
clause
GoogleSQL processes aliases in a FROM
clause from left to right, and aliases are visible only to subsequent path expressions in a FROM
clause.
Example:
Assume the Singers
table had a Concerts
column of ARRAY
type.
SELECT FirstName
FROM Singers AS s, s.Concerts;
Invalid:
SELECT FirstName
FROM s.Concerts, Singers AS s; // INVALID.
FROM
clause aliases are not visible to subqueries in the same FROM
clause. Subqueries in a FROM
clause can't contain correlated references to other tables in the same FROM
clause.
Invalid:
SELECT FirstName
FROM Singers AS s, (SELECT (2020 - ReleaseDate) FROM s) // INVALID.
You can use any column name from a table in the FROM
as an alias anywhere in the query, with or without qualification with the table name.
Example:
SELECT FirstName, s.ReleaseDate
FROM Singers s WHERE ReleaseDate = 1975;
If the FROM
clause contains an explicit alias, you must use the explicit alias instead of the implicit alias for the remainder of the query (see Implicit Aliases). A table alias is useful for brevity or to eliminate ambiguity in cases such as self-joins, where the same table is scanned multiple times during query processing.
Example:
SELECT * FROM Singers as s, Songs as s2
ORDER BY s.LastName
Invalid — ORDER BY
doesn't use the table alias:
SELECT * FROM Singers as s, Songs as s2
ORDER BY Singers.LastName; // INVALID.
Visibility in the SELECT
list
Aliases in the SELECT
list are visible only to the following clauses:
GROUP BY
clauseORDER BY
clauseHAVING
clauseExample:
SELECT LastName AS last, SingerID
FROM Singers
ORDER BY last;
Visibility in the GROUP BY
, ORDER BY
, and HAVING
clauses
These three clauses, GROUP BY
, ORDER BY
, and HAVING
, can refer to only the following values:
FROM
clause and any of their columns.SELECT
list.GROUP BY
and ORDER BY
can also refer to a third group:
SELECT
list. The integer 1
refers to the first item in the SELECT
list, 2
refers to the second item, etc.Example:
SELECT SingerID AS sid, COUNT(Songid) AS s2id
FROM Songs
GROUP BY 1
ORDER BY 2 DESC;
The previous query is equivalent to:
SELECT SingerID AS sid, COUNT(Songid) AS s2id
FROM Songs
GROUP BY sid
ORDER BY s2id DESC;
Duplicate aliases
A SELECT
list or subquery containing multiple explicit or implicit aliases of the same name is allowed, as long as the alias name isn't referenced elsewhere in the query, since the reference would be ambiguous.
Example:
SELECT 1 AS a, 2 AS a;
/*---+---*
| a | a |
+---+---+
| 1 | 2 |
*---+---*/
Ambiguous aliases
GoogleSQL provides an error if accessing a name is ambiguous, meaning it can resolve to more than one unique object in the query or in a table schema, including the schema of a destination table.
The following query contains column names that conflict between tables, since both Singers
and Songs
have a column named SingerID
:
SELECT SingerID
FROM Singers, Songs;
The following query contains aliases that are ambiguous in the GROUP BY
clause because they are duplicated in the SELECT
list:
SELECT FirstName AS name, LastName AS name,
FROM Singers
GROUP BY name;
The following query contains aliases that are ambiguous in the SELECT
list and FROM
clause because they share a column and field with same name.
Person
table has three columns: FirstName
, LastName
, and PrimaryContact
.PrimaryContact
column represents a struct with these fields: FirstName
and LastName
.The alias P
is ambiguous and will produce an error because P.FirstName
in the GROUP BY
clause could refer to either Person.FirstName
or Person.PrimaryContact.FirstName
.
SELECT FirstName, LastName, PrimaryContact AS P
FROM Person AS P
GROUP BY P.FirstName;
A name is not ambiguous in GROUP BY
, ORDER BY
or HAVING
if it's both a column name and a SELECT
list alias, as long as the name resolves to the same underlying object. In the following example, the alias BirthYear
isn't ambiguous because it resolves to the same underlying column, Singers.BirthYear
.
SELECT LastName, BirthYear AS BirthYear
FROM Singers
GROUP BY BirthYear;
Range variables
In GoogleSQL, a range variable is a table expression alias in the FROM
clause. Sometimes a range variable is known as a table alias
. A range variable lets you reference rows being scanned from a table expression. A table expression represents an item in the FROM
clause that returns a table. Common items that this expression can represent include tables, value tables, subqueries, joins, and parenthesized joins.
In general, a range variable provides a reference to the rows of a table expression. A range variable can be used to qualify a column reference and unambiguously identify the related table, for example range_variable.column_1
.
When referencing a range variable on its own without a specified column suffix, the result of a table expression is the row type of the related table. Value tables have explicit row types, so for range variables related to value tables, the result type is the value table's row type. Other tables don't have explicit row types, and for those tables, the range variable type is a dynamically defined struct that includes all of the columns in the table.
Examples
In these examples, the WITH
clause is used to emulate a temporary table called Grid
. This table has columns x
and y
. A range variable called Coordinate
refers to the current row as the table is scanned. Coordinate
can be used to access the entire row or columns in the row.
The following example selects column x
from range variable Coordinate
, which in effect selects column x
from table Grid
.
WITH Grid AS (SELECT 1 x, 2 y)
SELECT Coordinate.x FROM Grid AS Coordinate;
/*---*
| x |
+---+
| 1 |
*---*/
The following example selects all columns from range variable Coordinate
, which in effect selects all columns from table Grid
.
WITH Grid AS (SELECT 1 x, 2 y)
SELECT Coordinate.* FROM Grid AS Coordinate;
/*---+---*
| x | y |
+---+---+
| 1 | 2 |
*---+---*/
The following example selects the range variable Coordinate
, which is a reference to rows in table Grid
. Since Grid
isn't a value table, the result type of Coordinate
is a struct that contains all the columns from Grid
.
WITH Grid AS (SELECT 1 x, 2 y)
SELECT Coordinate FROM Grid AS Coordinate;
/*--------------*
| Coordinate |
+--------------+
| {x: 1, y: 2} |
*--------------*/
Hints
@{hint_key=hint_value[, ...]}
GoogleSQL supports hints, which make the query optimizer use a specific operator in the execution plan. If performance is an issue for you, a hint might be able to help by suggesting a different query execution plan shape.
Definitions
hint_key
: The name of the hint key.hint_value
: The value for hint_key
.Examples
@{KEY_ONE=TRUE}
@{KEY_TWO=10, KEY_THREE=FALSE}
Statement hints
The following query statement hints are supported:
Hint key Possible values DescriptionUSE_ADDITIONAL_PARALLELISM
TRUE
FALSE
(default) If TRUE
, the execution engine favors using more parallelism when possible. Because this can reduce resources available to other operations, you may want to avoid this hint if you run latency-sensitive operations on the same instance. OPTIMIZER_VERSION
1
to N
latest_version
default_version
Executes the query using the specified optimizer version. Possible values are 1
to N
(the latest optimizer version), default_version
, or latest_version
. If the hint isn't set, the optimizer executes against the package that's set in database options or specified through the client API. If neither of those are set, the optimizer uses the default version.
In terms of version setting precedence, the value set by the client API takes precedence over the value in the database options and the value set by this hint takes precedence over everything else.
For more information, see Query optimizer.
OPTIMIZER_STATISTICS_PACKAGE
package_name
latest
Executes the query using the specified optimizer statistics package. Possible values for package_name
can be found by running the following query:
SELECT * FROM INFORMATION_SCHEMA.SPANNER_STATISTICS
If the hint isn't set, the optimizer executes against the package that's set in the database option or specified through the client API. If neither of those are set, the optimizer defaults to the latest package.
The value set by the client API takes precedence over the value in the database options and the value set by this hint takes precedence over everything else.
The specified package needs to be pinned by the database option or have allow_gc=false
to prevent garbage collection.
For more information, see Query optimizer statistics packages.
ALLOW_DISTRIBUTED_MERGE
TRUE
(default)
FALSE
If TRUE
(default), the engine favors using a distributed merge sort algorithm for certain ORDER BY queries. When applicable, global sorts are changed to local sorts. This gives the advantage of parallel sorting close to where the data is stored. The locally sorted data is then merged to provide globally sorted data. This allows for removal of full global sorts and potentially improved latency.
This feature can increase parallelism of certain ORDER BY queries. This hint has been provided so that users can experiment with turning off the distributed merge algorithm if desired.
LOCK_SCANNED_RANGES
exclusive
shared
(default)
Use this hint to request an exclusive lock on a set of ranges scanned by a transaction. Acquiring an exclusive lock helps in scenarios when you observe high write contention, that is, you notice that multiple transactions are concurrently trying to read and write to the same data, resulting in a large number of aborts.
Without the hint, it's possible that multiple simultaneous transactions will acquire shared locks, and then try to upgrade to exclusive locks. This will cause a deadlock, because each transaction's shared lock is preventing the other transaction(s) from upgrading to exclusive. Spanner aborts all but one of the transactions.
When requesting an exclusive lock using this hint, one transaction acquires the lock and proceeds to execute, while other transactions wait their turn for the lock. Throughput is still limited because the conflicting transactions can only be performed one at a time, but in this case Spanner is always making progress on one transaction, saving time that would otherwise be spent aborting and retrying transactions.
This hint is supported on all statement types, both query and DML.
Spanner always enforces serializability Lock mode hints can affect which transactions wait or abort in contended workloads, but don't change the isolation level.
Because this is just a hint, it shouldn't be considered equivalent to a mutex. In other words, you shouldn't use Spanner exclusive locks as a mutual exclusion mechanism for the execution of code outside of Spanner. For more information, see Locking.
You can't use both the FOR UPDATE
clause and the LOCK_SCANNED_RANGES
hint in the same query. An error is returned. For more information, see .
SCAN_METHOD
AUTO
(default)
BATCH
ROW
Use this hint to enforce the query scan method.
The default Spanner scan method is AUTO
(automatic). The AUTO
setting specifies that batch-oriented query processing might be used to improve query performance. If you want to change the default scanning method, you can use a statement hint to enforce the BATCH
-oriented or ROW
-oriented processing method. You can't manually set the scan method to AUTO
; to do so, remove the statement hint, and Spanner will set it to the default method. For more information, see Optimize scans.
EXECUTION_METHOD
DEFAULT
BATCH
ROW
Use this hint to enforce the query execution method.
The default Spanner query execution method is DEFAULT
. The DEFAULT
setting specifies that batch-oriented execution might be used to improve query performance, depending on the heuristics of the query. If you want to change the default execution method, you can use a statement hint to enforce the BATCH
-oriented or ROW
-oriented execution method. You can't manually set the query execution method to DEFAULT
; to do so, remove the statement hint, and Spanner will set it to the default method. For more information, see Optimize query execution.
USE_UNENFORCED_FOREIGN_KEY
TRUE
(default)
FALSE
Use this hint to enforce the query scan method.
If TRUE
(default), the query optimizer relies on informational (NOT ENFORCED
) foreign key relationships to improve query performance. For example, if set to TRUE
, the optimizer can remove redundant scans, and push some LIMIT
operators through the join operators. USE_UNENFORCED_FOREIGN_KEY
overrides the value of the use_unenforced_foreign_key_for_query_optimization
database option for the applied statement. This hint might introduce incorrect results if the data is inconsistent with the foreign key relationships.
For more information, see informational foreign keys.
ALLOW_TIMESTAMP_PREDICATE_PUSHDOWN
TRUE
FALSE
(default) If set to TRUE
, the query execution engine uses the timestamp predicate pushdown optimization technique. This technique improves the efficiency of queries that use timestamps and data with an age-based tiered storage policy. For more information, see Optimize queries with timestamp predicate pushdown. Table hints
The following table hints are supported:
Hint key Possible values DescriptionFORCE_INDEX
STRING
_BASE_TABLE
, use the base table for the index strategy instead of an index. Note that this is the only valid value when FORCE_INDEX
is used in a statement hint expression.Note: FORCE_INDEX
is actually a directive, not a hint, which means an error is raised if the index doesn't exist.
GROUPBY_SCAN_OPTIMIZATION
TRUE
FALSE
The group by scan optimization can make queries faster if they use GROUP BY
or SELECT DISTINCT
. It can be applied if the grouping keys can form a prefix of the underlying table or index key, and if the query requires only the first row from each group.
The optimization is applied if the optimizer estimates that it will make the query more efficient. The hint overrides that decision. If the hint is set to FALSE
, the optimization isn't considered. If the hint is set to TRUE
, the optimization will be applied as long as it's legal to do so.
SCAN_METHOD
AUTO
(default)
BATCH
ROW
Use this hint to enforce the query scan method.
By default, Spanner sets the scan method as AUTO
(automatic) which means depending on the heuristics of the query, batch-oriented query processing might be used to improve query performance. If you want to change the default scanning method from AUTO
, you can use the hint to enforce a ROW
or BATCH
oriented processing method. For more information see Optimize scans.
INDEX_STRATEGY
FORCE_INDEX_UNION
Use the INDEX_STRATEGY=FORCE_INDEX_UNION
hint to access data, using the Index Union pattern (reading from two or more indexes and unioning the results). This hint is useful when the condition in the WHERE
clause is a disjunction. If an index union isn't possible, an error is raised.
SEEKABLE_KEY_SIZE
0
to 16
Forces the seekable key size to be equal to the specified value.
The seekable key size is the length of the key (primary key or index key) that's used in a seekable condition, while the rest of the key is used in a residual condition.
This hint requires the FORCE_INDEX
hint to also be specified.
The following example shows how to use a secondary index when reading from a table, by appending an index directive of the form @{FORCE_INDEX=index_name}
to the table name:
SELECT s.SingerId, s.FirstName, s.LastName, s.SingerInfo
FROM Singers@{FORCE_INDEX=SingersByFirstLastName} AS s
WHERE s.FirstName = "Catalina" AND s.LastName > "M";
You can include multiple indexes in a query, though only a single index is supported for each distinct table reference. Example:
SELECT s.SingerId, s.FirstName, s.LastName, s.SingerInfo, c.ConcertDate
FROM Singers@{FORCE_INDEX=SingersByFirstLastName} AS s JOIN
Concerts@{FORCE_INDEX=ConcertsBySingerId} AS c ON s.SingerId = c.SingerId
WHERE s.FirstName = "Catalina" AND s.LastName > "M";
Read more about index directives in Secondary Indexes.
Join hintsThe following join hints are supported:
Hint key Possible values DescriptionFORCE_JOIN_ORDER
TRUE
FALSE
(default) If set to true, use the join order that's specified in the query. JOIN_METHOD
HASH_JOIN
APPLY_JOIN
MERGE_JOIN
PUSH_BROADCAST_HASH_JOIN
HASH JOIN
or JOIN@{JOIN_METHOD=HASH_JOIN}
, but not both. HASH_JOIN_BUILD_SIDE
BUILD_LEFT
BUILD_RIGHT
Specifies which side of the hash join is used as the build side. Can only be used with JOIN_METHOD=HASH_JOIN
BATCH_MODE
TRUE
(default)
FALSE
Used to disable batched apply join in favor of row-at-a-time apply join. Can only be used with JOIN_METHOD=APPLY_JOIN
. HASH_JOIN_EXECUTION
MULTI_PASS
(default)
ONE_PASS
For a hash join, specifies what should be done when the hash table size reaches its memory limit. Can only be used when JOIN_METHOD=HASH_JOIN
. See Hash Join Execution for more details. Join methods
Join methods are specific implementations of the various logical join types. Some join methods are available only for certain join types. The choice of which join method to use depends on the specifics of your query and of the data being queried. The best way to figure out if a particular join method helps with the performance of your query is to try the method and view the resulting query execution plan. See Query Execution Operators for more details.
Join Method Description OperandsHASH_JOIN
The hash join operator builds a hash table out of one side (the build side), and probes in the hash table for all the elements in the other side (the probe side). Different variants are used for various join types. View the query execution plan for your query to see which variant is used. Read more about the Hash join operator. APPLY_JOIN
The apply join operator gets each item from one side (the input side), and evaluates the subquery on other side (the map side) using the values of the item from the input side. Different variants are used for various join types. Cross apply is used for inner join, and outer apply is used for left joins. Read more about the Cross apply and Outer apply operators. MERGE_JOIN
The merge join operator joins two streams of sorted data. The optimizer adds Sort operators to the plan if the data isn't already providing the required sort property for the given join condition. The engine provides a distributed merge sort by default, which when coupled with merge join may allow for larger joins, potentially avoiding disk spilling and improving scale and latency. Different variants are used for various join types. View the query execution plan for your query to see which variant is used. Read more about the Merge join operator. PUSH_BROADCAST_HASH_JOIN
The push broadcast hash join operator builds a batch of data from the build side of the join. The batch is then sent in parallel to all the local splits of the probe side of the join. On each of the local servers, a hash join is executed between the batch and the local data. This join is most likely to be beneficial when the input can fit within one batch, but isn't strict. Another potential area of benefit is when operations can be distributed to the local servers, such as an aggregation that occurs after a join. A push broadcast hash join can distribute some aggregation where a traditional hash join can't. Different variants are used for various join types. View the query execution plan for your query to see which variant is used. Read more about the Push broadcast hash join operator. Hash Join Execution
To execute a hash join between two tables, Spanner first scans rows from the build side and loads them into a hash table. Then it scans rows from the probe side, while comparing them against the hash table. If the hash table reaches its memory limit, depending on the value of the HASH_JOIN_EXECUTION
query hint, the hash join has one of the following behaviors:
HASH_JOIN_EXECUTION=MULTI_PASS
(default): The query engine splits the build side table into partitions in a way that the size of a hash table corresponding to each partition is less than the memory size limit. For every partition of the build side table, the probe side is scanned once.HASH_JOIN_EXECUTION=ONE_PASS
: The query engine writes both the build side table and the probe side table to disk in partitions in a way that the hash table of the build side table in each partition is less than the memory limit. The probe side is only scanned once.Hints are supported for graphs. For more information, see Graph hints.
Value tablesIn addition to standard SQL tables, GoogleSQL supports value tables. In a value table, rather than having rows made up of a list of columns, each row is a single value of a specific type, and there are no column names.
In the following example, a value table for a STRUCT
is produced with the SELECT AS VALUE
statement:
SELECT * FROM (SELECT AS VALUE STRUCT(123 AS a, FALSE AS b))
/*-----+-------*
| a | b |
+-----+-------+
| 123 | FALSE |
*-----+-------*/
Value tables are often but not exclusively used with compound data types. A value table can consist of any supported GoogleSQL data type, although value tables consisting of scalar types occur less frequently than structs.
Return query results as a value tableSpanner doesn't support value tables as base tables in database schemas and doesn't support returning value tables in query results. As a consequence, value table producing queries aren't supported as top-level queries.
Value tables can also occur as the output of the UNNEST
operator or a subquery. The WITH
clause introduces a value table if the subquery used produces a value table.
In contexts where a query with exactly one column is expected, a value table query can be used instead. For example, scalar and array subqueries normally require a single-column query, but in GoogleSQL, they also allow using a value table query.
Use a set operation on a value tableIn SET
operations like UNION ALL
you can combine tables with value tables, provided that the table consists of a single column with a type that matches the value table's type. The result of these operations is always a value table.
These examples include statements which perform queries on the Roster
and TeamMascot
, and PlayerStats
tables.
The following tables are used to illustrate the behavior of different query clauses in this reference.
Roster tableThe Roster
table includes a list of player names (LastName
) and the unique ID assigned to their school (SchoolID
). It looks like this:
/*-----------------------*
| LastName | SchoolID |
+-----------------------+
| Adams | 50 |
| Buchanan | 52 |
| Coolidge | 52 |
| Davis | 51 |
| Eisenhower | 77 |
*-----------------------*/
You can use this WITH
clause to emulate a temporary table name for the examples in this reference:
WITH Roster AS
(SELECT 'Adams' as LastName, 50 as SchoolID UNION ALL
SELECT 'Buchanan', 52 UNION ALL
SELECT 'Coolidge', 52 UNION ALL
SELECT 'Davis', 51 UNION ALL
SELECT 'Eisenhower', 77)
SELECT * FROM Roster
PlayerStats table
The PlayerStats
table includes a list of player names (LastName
) and the unique ID assigned to the opponent they played in a given game (OpponentID
) and the number of points scored by the athlete in that game (PointsScored
).
/*----------------------------------------*
| LastName | OpponentID | PointsScored |
+----------------------------------------+
| Adams | 51 | 3 |
| Buchanan | 77 | 0 |
| Coolidge | 77 | 1 |
| Adams | 52 | 4 |
| Buchanan | 50 | 13 |
*----------------------------------------*/
You can use this WITH
clause to emulate a temporary table name for the examples in this reference:
WITH PlayerStats AS
(SELECT 'Adams' as LastName, 51 as OpponentID, 3 as PointsScored UNION ALL
SELECT 'Buchanan', 77, 0 UNION ALL
SELECT 'Coolidge', 77, 1 UNION ALL
SELECT 'Adams', 52, 4 UNION ALL
SELECT 'Buchanan', 50, 13)
SELECT * FROM PlayerStats
TeamMascot table
The TeamMascot
table includes a list of unique school IDs (SchoolID
) and the mascot for that school (Mascot
).
/*---------------------*
| SchoolID | Mascot |
+---------------------+
| 50 | Jaguars |
| 51 | Knights |
| 52 | Lakers |
| 53 | Mustangs |
*---------------------*/
You can use this WITH
clause to emulate a temporary table name for the examples in this reference:
WITH TeamMascot AS
(SELECT 50 as SchoolID, 'Jaguars' as Mascot UNION ALL
SELECT 51, 'Knights' UNION ALL
SELECT 52, 'Lakers' UNION ALL
SELECT 53, 'Mustangs')
SELECT * FROM TeamMascot
GROUP BY
clause
Example:
SELECT LastName, SUM(PointsScored)
FROM PlayerStats
GROUP BY LastName;
LastName SUM Adams 7 Buchanan 13 Coolidge 1 UNION
The UNION
operator combines the result sets of two or more SELECT
statements by pairing columns from the result set of each SELECT
statement and vertically concatenating them.
Example:
SELECT Mascot AS X, SchoolID AS Y
FROM TeamMascot
UNION ALL
SELECT LastName, PointsScored
FROM PlayerStats;
Results:
X Y Jaguars 50 Knights 51 Lakers 52 Mustangs 53 Adams 3 Buchanan 0 Coolidge 1 Adams 4 Buchanan 13INTERSECT
This query returns the last names that are present in both Roster and PlayerStats.
SELECT LastName
FROM Roster
INTERSECT ALL
SELECT LastName
FROM PlayerStats;
Results:
LastName Adams Coolidge BuchananEXCEPT
The query below returns last names in Roster that are not present in PlayerStats.
SELECT LastName
FROM Roster
EXCEPT DISTINCT
SELECT LastName
FROM PlayerStats;
Results:
LastName Eisenhower DavisReversing the order of the SELECT
statements will return last names in PlayerStats that are not present in Roster:
SELECT LastName
FROM PlayerStats
EXCEPT DISTINCT
SELECT LastName
FROM Roster;
Results:
(empty)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4