Stay organized with collections Save and categorize content based on your preferences.
Client(
project=None,
credentials=None,
_http=None,
location=None,
default_query_job_config=None,
default_load_job_config=None,
client_info=None,
client_options=None,
)
Client to bundle configuration needed for API requests.
Parameters Name Descriptionproject
Optional[str]
Project ID for the project which the client acts on behalf of. Will be passed when creating a dataset / job. If not passed, falls back to the default inferred from the environment.
credentials
Optional[google.auth.credentials.Credentials]
The OAuth2 Credentials to use for this client. If not passed (and if no _http
object is passed), falls back to the default inferred from the environment.
_http
Optional[requests.Session]
HTTP object to make requests. Can be any object that defines request()
with the same interface as requests.Session.request
. If not passed, an _http
object is created that is bound to the credentials
for the current object. This parameter should be considered private, and could change in the future.
location
Optional[str]
Default location for jobs / datasets / tables.
default_query_job_config
Optional[google.cloud.bigquery.job.QueryJobConfig]
Default QueryJobConfig
. Will be merged into job configs passed into the query
method.
default_load_job_config
Optional[google.cloud.bigquery.job.LoadJobConfig]
Default LoadJobConfig
. Will be merged into job configs passed into the load_table_*
methods.
client_info
Optional[google.api_core.client_info.ClientInfo]
The client info used to send a user-agent string along with API requests. If None
, then default info will be used. Generally, you only need to set this if you're developing your own library or partner tool.
client_options
Optional[Union[google.api_core.client_options.ClientOptions, Dict]]
Client options used to set user options on the client. API Endpoint should be set through client_options.
Properties default_load_job_configDefault LoadJobConfig
. Will be merged into job configs passed into the load_table_*
methods.
Default QueryJobConfig
or None
.
Will be merged into job configs passed into the query
or query_and_wait
methods.
Default location for jobs / datasets / tables.
Methods __getstate__Explicitly state that clients are not pickleable.
cancel_jobcancel_job(job_id: str, project: typing.Optional[str] = None, location: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> typing.Union[google.cloud.bigquery.job.load.LoadJob, google.cloud.bigquery.job.copy_.CopyJob, google.cloud.bigquery.job.extract.ExtractJob, google.cloud.bigquery.job.query.QueryJob]
close
Close the underlying transport objects, releasing system resources.
Note: The client instance can be used for making additional requests even after closing, in which case the underlying connections are automatically re-created. copy_tablecopy_table(sources: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str, typing.Sequence[typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str]]], destination: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], job_id: typing.Optional[str] = None, job_id_prefix: typing.Optional[str] = None, location: typing.Optional[str] = None, project: typing.Optional[str] = None, job_config: typing.Optional[google.cloud.bigquery.job.copy_.CopyJobConfig] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.job.copy_.CopyJob
Parameters Name Description sources
Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str, Sequence[ Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str, ] ], ]
Table or tables to be copied.
destination
Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str, ]
Table into which data is to be copied.
job_id
Optional[str]
The ID of the job.
job_id_prefix
Optional[str]
The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of any source table as well as the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
job_config
Optional[google.cloud.bigquery.job.CopyJobConfig]
Extra configuration options for the job.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
TypeError
If job_config
is not an instance of CopyJobConfig class. create_dataset
create_dataset(dataset: typing.Union[str, google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem], exists_ok: bool = False, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.dataset.Dataset
Exceptions Type Description google.cloud.exceptions.Conflict
If the dataset already exists. .. rubric:: Example >>> from google.cloud import bigquery >>> client = bigquery.Client() >>> dataset = bigquery.Dataset('my_project.my_dataset') >>> dataset = client.create_dataset(dataset) create_job
create_job(job_config: dict, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> typing.Union[google.cloud.bigquery.job.load.LoadJob, google.cloud.bigquery.job.copy_.CopyJob, google.cloud.bigquery.job.extract.ExtractJob, google.cloud.bigquery.job.query.QueryJob]
Create a new job.
Parameters Name Descriptionjob_config
dict
configuration job representation returned from the API.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
create_routine(routine: google.cloud.bigquery.routine.routine.Routine, exists_ok: bool = False, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.routine.routine.Routine
Parameters Name Description routine
google.cloud.bigquery.routine.Routine
A Routine to create. The dataset that the routine belongs to must already exist.
exists_ok
Optional[bool]
Defaults to False
. If True
, ignore "already exists" errors when creating the routine.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
google.cloud.exceptions.Conflict
If the routine already exists. create_table
create_table(table: typing.Union[str, google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem], exists_ok: bool = False, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.table.Table
Exceptions Type Description google.cloud.exceptions.Conflict
If the table already exists. dataset
dataset(
dataset_id: str, project: typing.Optional[str] = None
) -> google.cloud.bigquery.dataset.DatasetReference
Deprecated: Construct a reference to a dataset.
deprecated: Construct a xref_DatasetReference using its constructor or use a string where previously a reference object was used.As of
google-cloud-bigquery
version 1.7.0, all client methods that take a xref_DatasetReference or xref_TableReference also take a string in standard SQL format, e.g.
project.dataset_id
or
project.dataset_id.table_id
.
Parameters Name Descriptiondataset_id
str
ID of the dataset.
project
Optional[str]
Project ID for the dataset (defaults to the project of the client).
delete_datasetdelete_dataset(dataset: typing.Union[google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str], delete_contents: bool = False, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, not_found_ok: bool = False) -> None
Parameters Name Description dataset
Union[ google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str, ]
A reference to the dataset to delete. If a string is passed in, this method attempts to create a dataset reference from a string using from_string.
delete_contents
Optional[bool]
If True, delete all the tables in the dataset. If False and the dataset contains tables, the request will fail. Default is False.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
not_found_ok
Optional[bool]
Defaults to False
. If True
, ignore "not found" errors when deleting the dataset.
delete_job_metadata(job_id: typing.Union[str, google.cloud.bigquery.job.load.LoadJob, google.cloud.bigquery.job.copy_.CopyJob, google.cloud.bigquery.job.extract.ExtractJob, google.cloud.bigquery.job.query.QueryJob], project: typing.Optional[str] = None, location: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, not_found_ok: bool = False)
[Beta] Delete job metadata from job history.
Note: This does not stop a running job. Use xref_cancel_job instead.
Parameters Name Descriptionjob_id
Union[ str, LoadJob, CopyJob, ExtractJob, QueryJob ]
Job or job identifier.
project
Optional[str]
ID of the project which owns the job (defaults to the client's project).
location
Optional[str]
Location where the job was run. Ignored if job_id
is a job object.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
not_found_ok
Optional[bool]
Defaults to False
. If True
, ignore "not found" errors when deleting the job.
delete_model(model: typing.Union[google.cloud.bigquery.model.Model, google.cloud.bigquery.model.ModelReference, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, not_found_ok: bool = False) -> None
Parameters Name Description model
Union[ google.cloud.bigquery.model.Model, google.cloud.bigquery.model.ModelReference, str, ]
A reference to the model to delete. If a string is passed in, this method attempts to create a model reference from a string using from_string.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
not_found_ok
Optional[bool]
Defaults to False
. If True
, ignore "not found" errors when deleting the model.
delete_routine(routine: typing.Union[google.cloud.bigquery.routine.routine.Routine, google.cloud.bigquery.routine.routine.RoutineReference, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, not_found_ok: bool = False) -> None
Parameters Name Description routine
Union[ google.cloud.bigquery.routine.Routine, google.cloud.bigquery.routine.RoutineReference, str, ]
A reference to the routine to delete. If a string is passed in, this method attempts to create a routine reference from a string using from_string.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
not_found_ok
Optional[bool]
Defaults to False
. If True
, ignore "not found" errors when deleting the routine.
delete_table(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, not_found_ok: bool = False) -> None
extract_table(source: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, google.cloud.bigquery.model.Model, google.cloud.bigquery.model.ModelReference, str], destination_uris: typing.Union[str, typing.Sequence[str]], job_id: typing.Optional[str] = None, job_id_prefix: typing.Optional[str] = None, location: typing.Optional[str] = None, project: typing.Optional[str] = None, job_config: typing.Optional[google.cloud.bigquery.job.extract.ExtractJobConfig] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, source_type: str = 'Table') -> google.cloud.bigquery.job.extract.ExtractJob
Parameters Name Description source
Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, google.cloud.bigquery.model.Model, google.cloud.bigquery.model.ModelReference, src, ]
Table or Model to be extracted.
destination_uris
Union[str, Sequence[str]]
URIs of Cloud Storage file(s) into which table data is to be extracted; in format gs://<bucket_name>/<object_name_or_glob>
.
job_id
Optional[str]
The ID of the job.
job_id_prefix
Optional[str]
The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of the source table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
job_config
Optional[google.cloud.bigquery.job.ExtractJobConfig]
Extra configuration options for the job.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
source_type
Optional[str]
Type of source to be extracted.Table
or Model
. Defaults to Table
.
TypeError
If job_config
is not an instance of ExtractJobConfig class. ValueError
If source_type
is not among Table
,Model
. from_service_account_info
from_service_account_info(info, *args, **kwargs)
Factory to retrieve JSON credentials while creating client.
Parameters Name Descriptionargs
tuple
Remaining positional arguments to pass to constructor.
info
dict
The JSON object with a private key and other credentials information (downloaded from the Google APIs console).
Exceptions Type DescriptionTypeError
if there is a conflict with the kwargs and the credentials created by the factory. Returns Type Description _ClientFactoryMixin
The client created with the retrieved JSON credentials. from_service_account_json
from_service_account_json(json_credentials_path, *args, **kwargs)
Factory to retrieve JSON credentials while creating client.
Parameters Name Descriptionargs
tuple
Remaining positional arguments to pass to constructor.
json_credentials_path
str
The path to a private key file (this file was given to you when you created the service account). This file must contain a JSON object with a private key and other credentials information (downloaded from the Google APIs console).
Exceptions Type DescriptionTypeError
if there is a conflict with the kwargs and the credentials created by the factory. Returns Type Description _ClientFactoryMixin
The client created with the retrieved JSON credentials. get_dataset
get_dataset(dataset_ref: typing.Union[google.cloud.bigquery.dataset.DatasetReference, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.dataset.Dataset
Fetch the dataset referenced by dataset_ref
dataset_ref
Union[ google.cloud.bigquery.dataset.DatasetReference, str, ]
A reference to the dataset to fetch from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using from_string.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
get_iam_policy(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], requested_policy_version: int = 1, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.api_core.iam.Policy
Return the access control policy for a table resource.
Returns Type Descriptiongoogle.api_core.iam.Policy
The access control policy. get_job
get_job(job_id: typing.Union[str, google.cloud.bigquery.job.load.LoadJob, google.cloud.bigquery.job.copy_.CopyJob, google.cloud.bigquery.job.extract.ExtractJob, google.cloud.bigquery.job.query.QueryJob], project: typing.Optional[str] = None, location: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> typing.Union[google.cloud.bigquery.job.load.LoadJob, google.cloud.bigquery.job.copy_.CopyJob, google.cloud.bigquery.job.extract.ExtractJob, google.cloud.bigquery.job.query.QueryJob, google.cloud.bigquery.job.base.UnknownJob]
Parameters Name Description job_id
Union[ str, job.LoadJob, job.CopyJob, job.ExtractJob, job.QueryJob ]
Job identifier.
project
Optional[str]
ID of the project which owns the job (defaults to the client's project).
location
Optional[str]
Location where the job was run. Ignored if job_id
is a job object.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
Union[job.LoadJob, job.CopyJob, job.ExtractJob, job.QueryJob, job.UnknownJob]
Job instance, based on the resource returned by the API. get_model
get_model(model_ref: typing.Union[google.cloud.bigquery.model.ModelReference, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.model.Model
[Beta] Fetch the model referenced by model_ref
.
model_ref
Union[ google.cloud.bigquery.model.ModelReference, str, ]
A reference to the model to fetch from the BigQuery API. If a string is passed in, this method attempts to create a model reference from a string using from_string.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
get_routine(routine_ref: typing.Union[google.cloud.bigquery.routine.routine.Routine, google.cloud.bigquery.routine.routine.RoutineReference, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.routine.routine.Routine
[Beta] Get the routine referenced by routine_ref
.
routine_ref
Union[ google.cloud.bigquery.routine.Routine, google.cloud.bigquery.routine.RoutineReference, str, ]
A reference to the routine to fetch from the BigQuery API. If a string is passed in, this method attempts to create a reference from a string using from_string.
retry
Optional[google.api_core.retry.Retry]
How to retry the API call.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
get_service_account_email(project: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> str
Get the email address of the project's BigQuery service account
Note: This is the service account that BigQuery uses to manage tables encrypted by a key in KMS. Parameters Name Descriptionproject
Optional[str]
Project ID to use for retreiving service account email. Defaults to the client's project.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
str .. rubric:: Example >>> from google.cloud import bigquery >>> client = bigquery.Client() >>> client.get_service_account_email() my_service_account@my-project.iam.gserviceaccount.com
service account email address get_table
get_table(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.table.Table
Fetch the table referenced by table
.
insert_rows(
table: typing.Union[
google.cloud.bigquery.table.Table,
google.cloud.bigquery.table.TableReference,
str,
],
rows: typing.Union[
typing.Iterable[typing.Tuple], typing.Iterable[typing.Mapping[str, typing.Any]]
],
selected_fields: typing.Optional[
typing.Sequence[google.cloud.bigquery.schema.SchemaField]
] = None,
**kwargs
) -> typing.Sequence[typing.Dict[str, typing.Any]]
Parameters Name Description table
Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, str, ]
The destination table for the row data, or a reference to it.
rows
Union[Sequence[Tuple], Sequence[Dict]]
Row data to be inserted. If a list of tuples is given, each tuple should contain data for each schema field on the current table and in the same order as the schema fields. If a list of dictionaries is given, the keys must include all required fields in the schema. Keys which do not correspond to a field in the schema are ignored.
selected_fields
Sequence[google.cloud.bigquery.schema.SchemaField]
The fields to return. Required if table
is a TableReference.
kwargs
dict
Keyword arguments to insert_rows_json.
Exceptions Type DescriptionValueError
if table's schema is not set or rows
is not a Sequence
. Returns Type Description Sequence[Mappings]
One mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. insert_rows_from_dataframe
insert_rows_from_dataframe(
table: typing.Union[
google.cloud.bigquery.table.Table,
google.cloud.bigquery.table.TableReference,
str,
],
dataframe,
selected_fields: typing.Optional[
typing.Sequence[google.cloud.bigquery.schema.SchemaField]
] = None,
chunk_size: int = 500,
**kwargs: typing.Dict
) -> typing.Sequence[typing.Sequence[dict]]
Insert rows into a table from a dataframe via the streaming API.
BigQuery will reject insertAll payloads that exceed a defined limit (10MB). Additionally, if a payload vastly exceeds this limit, the request is rejected by the intermediate architecture, which returns a 413 (Payload Too Large) status code.
See https://cloud.google.com/bigquery/quotas#streaming_inserts
Exceptions Type DescriptionValueError
if table's schema is not set Returns Type Description Sequence[Sequence[Mappings]]
A list with insert errors for each insert chunk. Each element is a list containing one mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. insert_rows_json
insert_rows_json(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], json_rows: typing.Sequence[typing.Mapping[str, typing.Any]], row_ids: typing.Optional[typing.Union[typing.Iterable[typing.Optional[str]], google.cloud.bigquery.enums.AutoRowIDs]] = AutoRowIDs.GENERATE_UUID, skip_invalid_rows: typing.Optional[bool] = None, ignore_unknown_values: typing.Optional[bool] = None, template_suffix: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> typing.Sequence[dict]
Parameters Name Description table
Union[ google.cloud.bigquery.table.Table google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str ]
The destination table for the row data, or a reference to it.
json_rows
Sequence[Dict]
Row data to be inserted. Keys must match the table schema fields and values must be JSON-compatible representations.
row_ids
Union[Iterable[str], AutoRowIDs, None]
Unique IDs, one per row being inserted. An ID can also be None
, indicating that an explicit insert ID should not be used for that row. If the argument is omitted altogether, unique IDs are created automatically. .. versionchanged:: 2.21.0 Can also be an iterable, not just a sequence, or an AutoRowIDs
enum member. .. deprecated:: 2.21.0 Passing None
to explicitly request autogenerating insert IDs is deprecated, use AutoRowIDs.GENERATE_UUID
instead.
skip_invalid_rows
Optional[bool]
Insert all valid rows of a request, even if invalid rows exist. The default value is False
, which causes the entire request to fail if any invalid rows exist.
ignore_unknown_values
Optional[bool]
Accept rows that contain values that do not match the schema. The unknown values are ignored. Default is False
, which treats unknown values as errors.
template_suffix
Optional[str]
Treat name
as a template table and provide a suffix. BigQuery will create the table based on the schema of the template table. See https://cloud.google.com/bigquery/streaming-data-into-bigquery#template-tables
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
TypeError
if json_rows
is not a Sequence
. Returns Type Description Sequence[Mappings]
One mapping per row with insert errors: the "index" key identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. job_from_resource
job_from_resource(
resource: dict,
) -> typing.Union[
google.cloud.bigquery.job.copy_.CopyJob,
google.cloud.bigquery.job.extract.ExtractJob,
google.cloud.bigquery.job.load.LoadJob,
google.cloud.bigquery.job.query.QueryJob,
google.cloud.bigquery.job.base.UnknownJob,
]
Detect correct job type from resource and instantiate.
Parameter Name Descriptionresource
Dict
one job resource from API response
Returns Type DescriptionUnion[job.CopyJob, job.ExtractJob, job.LoadJob, job.QueryJob, job.UnknownJob]
The job instance, constructed via the resource. list_datasets
list_datasets(project: typing.Optional[str] = None, include_all: bool = False, filter: typing.Optional[str] = None, max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, page_size: typing.Optional[int] = None) -> google.api_core.page_iterator.Iterator
Parameters Name Description project
Optional[str]
Project ID to use for retreiving datasets. Defaults to the client's project.
include_all
Optional[bool]
True if results include hidden datasets. Defaults to False.
filter
Optional[str]
An expression for filtering the results by label. For syntax, see https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list#body.QUERY_PARAMETERS.filter
max_results
Optional[int]
Maximum number of datasets to return.
page_token
Optional[str]
Token representing a cursor into the datasets. If not passed, the API will return the first page of datasets. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of the google.api_core.page_iterator.HTTPIterator
.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
page_size
Optional[int]
Maximum number of datasets to return per page.
Returns Type Descriptiongoogle.api_core.page_iterator.Iterator
Iterator of DatasetListItem. associated with the project. list_jobs
list_jobs(project: typing.Optional[str] = None, parent_job: typing.Optional[typing.Union[google.cloud.bigquery.job.query.QueryJob, str]] = None, max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, all_users: typing.Optional[bool] = None, state_filter: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, min_creation_time: typing.Optional[datetime.datetime] = None, max_creation_time: typing.Optional[datetime.datetime] = None, page_size: typing.Optional[int] = None) -> google.api_core.page_iterator.Iterator
Parameters Name Description project
Optional[str]
Project ID to use for retreiving datasets. Defaults to the client's project.
parent_job
Optional[Union[ google.cloud.bigquery.job._AsyncJob, str, ]]
If set, retrieve only child jobs of the specified parent.
max_results
Optional[int]
Maximum number of jobs to return.
page_token
Optional[str]
Opaque marker for the next "page" of jobs. If not passed, the API will return the first page of jobs. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of google.api_core.page_iterator.HTTPIterator
.
all_users
Optional[bool]
If true, include jobs owned by all users in the project. Defaults to :data:False
.
state_filter
Optional[str]
If set, include only jobs matching the given state. One of: * "done"
* "pending"
* "running"
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
min_creation_time
Optional[datetime.datetime]
Min value for job creation time. If set, only jobs created after or at this timestamp are returned. If the datetime has no time zone assumes UTC time.
max_creation_time
Optional[datetime.datetime]
Max value for job creation time. If set, only jobs created before or at this timestamp are returned. If the datetime has no time zone assumes UTC time.
page_size
Optional[int]
Maximum number of jobs to return per page.
Returns Type Descriptiongoogle.api_core.page_iterator.Iterator
Iterable of job instances. list_models
list_models(dataset: typing.Union[google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str], max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, page_size: typing.Optional[int] = None) -> google.api_core.page_iterator.Iterator
Parameters Name Description dataset
Union[ google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str, ]
A reference to the dataset whose models to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using from_string.
max_results
Optional[int]
Maximum number of models to return. Defaults to a value set by the API.
page_token
Optional[str]
Token representing a cursor into the models. If not passed, the API will return the first page of models. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of the google.api_core.page_iterator.HTTPIterator
.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
page_size
Optional[int] Returns: google.api_core.page_iterator.Iterator: Iterator of Model contained within the requested dataset.
Maximum number of models to return per page. Defaults to a value set by the API.
list_partitionslist_partitions(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> typing.Sequence[str]
List the partitions in a table.
Returns Type DescriptionList[str]
A list of the partition ids present in the partitioned table list_projects
list_projects(max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, page_size: typing.Optional[int] = None) -> google.api_core.page_iterator.Iterator
Parameters Name Description max_results
Optional[int]
Maximum number of projects to return. Defaults to a value set by the API.
page_token
Optional[str]
Token representing a cursor into the projects. If not passed, the API will return the first page of projects. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of the google.api_core.page_iterator.HTTPIterator
.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
page_size
Optional[int]
Maximum number of projects to return in each page. Defaults to a value set by the API.
Returns Type Descriptiongoogle.api_core.page_iterator.Iterator
Iterator of Project accessible to the current client. list_routines
list_routines(dataset: typing.Union[google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str], max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, page_size: typing.Optional[int] = None) -> google.api_core.page_iterator.Iterator
Parameters Name Description dataset
Union[ google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str, ]
A reference to the dataset whose routines to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using from_string.
max_results
Optional[int]
Maximum number of routines to return. Defaults to a value set by the API.
page_token
Optional[str]
Token representing a cursor into the routines. If not passed, the API will return the first page of routines. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of the google.api_core.page_iterator.HTTPIterator
.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
page_size
Optional[int] Returns: google.api_core.page_iterator.Iterator: Iterator of all Routines contained within the requested dataset, limited by max_results
.
Maximum number of routines to return per page. Defaults to a value set by the API.
list_rowslist_rows(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableListItem, google.cloud.bigquery.table.TableReference, str], selected_fields: typing.Optional[typing.Sequence[google.cloud.bigquery.schema.SchemaField]] = None, max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, start_index: typing.Optional[int] = None, page_size: typing.Optional[int] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.table.RowIterator
List the rows of the table.
See https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/list
Note: This method assumes that the provided schema is up-to-date with the schema as defined on the back-end: if the two schemas are not identical, the values returned may be incomplete. To ensure that the local copy of the schema is up-to-date, callclient.get_table
. Parameters Name Description table
Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableListItem, google.cloud.bigquery.table.TableReference, str, ]
The table to list, or a reference to it. When the table object does not contain a schema and selected_fields
is not supplied, this method calls get_table
to fetch the table schema.
selected_fields
Sequence[google.cloud.bigquery.schema.SchemaField]
The fields to return. If not supplied, data for all columns are downloaded.
max_results
Optional[int]
Maximum number of rows to return.
page_token
Optional[str]
Token representing a cursor into the table's rows. If not passed, the API will return the first page of the rows. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of the RowIterator.
start_index
Optional[int]
The zero-based index of the starting row to read.
page_size
Optional[int]
The maximum number of rows in each page of results from this request. Non-positive values are ignored. Defaults to a sensible value set by the API.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
. If multiple requests are made under the hood, timeout
applies to each individual request.
google.cloud.bigquery.table.RowIterator
Iterator of row data Row-s. During each page, the iterator will have the total_rows
attribute set, which counts the total number of rows **in the table** (this is distinct from the total number of rows in the current page: iterator.page.num_items
). list_tables
list_tables(dataset: typing.Union[google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str], max_results: typing.Optional[int] = None, page_token: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, page_size: typing.Optional[int] = None) -> google.api_core.page_iterator.Iterator
Parameters Name Description dataset
Union[ google.cloud.bigquery.dataset.Dataset, google.cloud.bigquery.dataset.DatasetReference, google.cloud.bigquery.dataset.DatasetListItem, str, ]
A reference to the dataset whose tables to list from the BigQuery API. If a string is passed in, this method attempts to create a dataset reference from a string using from_string.
max_results
Optional[int]
Maximum number of tables to return. Defaults to a value set by the API.
page_token
Optional[str]
Token representing a cursor into the tables. If not passed, the API will return the first page of tables. The token marks the beginning of the iterator to be returned and the value of the page_token
can be accessed at next_page_token
of the google.api_core.page_iterator.HTTPIterator
.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
page_size
Optional[int]
Maximum number of tables to return per page. Defaults to a value set by the API.
Returns Type Descriptiongoogle.api_core.page_iterator.Iterator
Iterator of TableListItem contained within the requested dataset. load_table_from_dataframe
load_table_from_dataframe(
dataframe: pandas.DataFrame,
destination: typing.Union[
google.cloud.bigquery.table.Table,
google.cloud.bigquery.table.TableReference,
str,
],
num_retries: int = 6,
job_id: typing.Optional[str] = None,
job_id_prefix: typing.Optional[str] = None,
location: typing.Optional[str] = None,
project: typing.Optional[str] = None,
job_config: typing.Optional[google.cloud.bigquery.job.load.LoadJobConfig] = None,
parquet_compression: str = "snappy",
timeout: typing.Union[None, float, typing.Tuple[float, float]] = None,
) -> google.cloud.bigquery.job.load.LoadJob
Upload the contents of a table from a pandas DataFrame.
Similar to load_table_from_uri
, this method creates, starts and returns a xref_LoadJob.
parquet
file, a mismatch with the existing table schema can occur, so REPEATED fields are not properly supported when using pyarrow<4.0.0
using the parquet format. https://github.com/googleapis/python-bigquery/issues/19 Parameters Name Description destination
Union[ Table, TableReference, str ]
The destination table to use for loading the data. If it is an existing table, the schema of the pandas.DataFrame
must match the schema of the destination table. If the table does not yet exist, the schema is inferred from the pandas.DataFrame
. If a string is passed in, this method attempts to create a table reference from a string using from_string.
num_retries
Optional[int]
Number of upload retries. Defaults to 6.
job_id
Optional[str]
Name of the job.
job_id_prefix
Optional[str]
The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
job_config
Optional[LoadJobConfig]
Extra configuration options for the job. To override the default pandas data type conversions, supply a value for schema with column names matching those of the dataframe. The BigQuery schema is used to determine the correct data type conversion. Indexes are not loaded. By default, this method uses the parquet source format. To override this, supply a value for source_format with the format name. Currently only CSV and PARQUET are supported.
parquet_compression
Optional[str]
[Beta] The compression method to use if intermittently serializing dataframe
to a parquet file. Defaults to "snappy". The argument is directly passed as the compression
argument to the underlying pyarrow.parquet.write_table()
method (the default value "snappy" gets converted to uppercase). https://arrow.apache.org/docs/python/generated/pyarrow.parquet.write_table.html#pyarrow-parquet-write-table If the job config schema is missing, the argument is directly passed as the compression
argument to the underlying DataFrame.to_parquet()
method. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html#pandas.DataFrame.to_parquet
timeout
Optional[flaot]
The number of seconds to wait for the underlying HTTP transport before using retry
. Depending on the retry strategy, a request may be repeated several times using the same timeout each time. Defaults to None. Can also be passed as a tuple (connect_timeout, read_timeout). See requests.Session.request
documentation for details.
dataframe
pandas.Dataframe
A pandas.DataFrame
containing the data to load.
ValueError
If a usable parquet engine cannot be found. This method requires pyarrow
to be installed. TypeError
If job_config
is not an instance of LoadJobConfig class. load_table_from_file
load_table_from_file(
file_obj: typing.IO[bytes],
destination: typing.Union[
google.cloud.bigquery.table.Table,
google.cloud.bigquery.table.TableReference,
google.cloud.bigquery.table.TableListItem,
str,
],
rewind: bool = False,
size: typing.Optional[int] = None,
num_retries: int = 6,
job_id: typing.Optional[str] = None,
job_id_prefix: typing.Optional[str] = None,
location: typing.Optional[str] = None,
project: typing.Optional[str] = None,
job_config: typing.Optional[google.cloud.bigquery.job.load.LoadJobConfig] = None,
timeout: typing.Union[None, float, typing.Tuple[float, float]] = None,
) -> google.cloud.bigquery.job.load.LoadJob
Upload the contents of this table from a file-like object.
Similar to load_table_from_uri
, this method creates, starts and returns a xref_LoadJob.
file_obj
IO[bytes]
A file handle opened in binary mode for reading.
destination
Union[Table, TableReference, TableListItem, str ]
Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using from_string.
rewind
Optional[bool]
If True, seek to the beginning of the file handle before reading the file. Defaults to False.
size
Optional[int]
The number of bytes to read from the file handle. If size is None
or large, resumable upload will be used. Otherwise, multipart upload will be used.
num_retries
Optional[int]
Number of upload retries. Defaults to 6.
job_id
Optional[str]
Name of the job.
job_id_prefix
Optional[str]
The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
job_config
Optional[LoadJobConfig]
Extra configuration options for the job.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
. Depending on the retry strategy, a request may be repeated several times using the same timeout each time. Defaults to None. Can also be passed as a tuple (connect_timeout, read_timeout). See requests.Session.request
documentation for details.
ValueError
If size
is not passed in and can not be determined, or if the file_obj
can be detected to be a file opened in text mode. TypeError
If job_config
is not an instance of LoadJobConfig class. load_table_from_json
load_table_from_json(
json_rows: typing.Iterable[typing.Dict[str, typing.Any]],
destination: typing.Union[
google.cloud.bigquery.table.Table,
google.cloud.bigquery.table.TableReference,
google.cloud.bigquery.table.TableListItem,
str,
],
num_retries: int = 6,
job_id: typing.Optional[str] = None,
job_id_prefix: typing.Optional[str] = None,
location: typing.Optional[str] = None,
project: typing.Optional[str] = None,
job_config: typing.Optional[google.cloud.bigquery.job.load.LoadJobConfig] = None,
timeout: typing.Union[None, float, typing.Tuple[float, float]] = None,
) -> google.cloud.bigquery.job.load.LoadJob
Upload the contents of a table from a JSON string or dict.
Parameters Name Descriptionjson_rows
Iterable[Dict[str, Any]]
Row data to be inserted. Keys must match the table schema fields and values must be JSON-compatible representations. .. note:: If your data is already a newline-delimited JSON string, it is best to wrap it into a file-like object and pass it to load_table_from_file:: import io from google.cloud import bigquery data = u'{"foo": "bar"}' data_as_file = io.StringIO(data) client = bigquery.Client() client.load_table_from_file(data_as_file, ...)
destination
Union[ Table, TableReference, TableListItem, str ]
Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using from_string.
num_retries
Optional[int]
Number of upload retries. Defaults to 6.
job_id
Optional[str]
Name of the job.
job_id_prefix
Optional[str]
The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
job_config
Optional[LoadJobConfig]
Extra configuration options for the job. The source_format
setting is always set to NEWLINE_DELIMITED_JSON.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
. Depending on the retry strategy, a request may be repeated several times using the same timeout each time. Defaults to None. Can also be passed as a tuple (connect_timeout, read_timeout). See requests.Session.request
documentation for details.
TypeError
If job_config
is not an instance of LoadJobConfig class. load_table_from_uri
load_table_from_uri(source_uris: typing.Union[str, typing.Sequence[str]], destination: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], job_id: typing.Optional[str] = None, job_id_prefix: typing.Optional[str] = None, location: typing.Optional[str] = None, project: typing.Optional[str] = None, job_config: typing.Optional[google.cloud.bigquery.job.load.LoadJobConfig] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.job.load.LoadJob
Parameters Name Description source_uris
Union[str, Sequence[str]]
URIs of data files to be loaded; in format gs://<bucket_name>/<object_name_or_glob>
.
destination
Union[ google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str, ]
Table into which data is to be loaded. If a string is passed in, this method attempts to create a table reference from a string using from_string.
job_id
Optional[str]
Name of the job.
job_id_prefix
Optional[str]
The user-provided prefix for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
job_config
Optional[google.cloud.bigquery.job.LoadJobConfig]
Extra configuration options for the job.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
TypeError
If job_config
is not an instance of LoadJobConfig class. query
query(query: str, job_config: typing.Optional[google.cloud.bigquery.job.query.QueryJobConfig] = None, job_id: typing.Optional[str] = None, job_id_prefix: typing.Optional[str] = None, location: typing.Optional[str] = None, project: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, job_retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, api_method: typing.Union[str, google.cloud.bigquery.enums.QueryApiMethod] = QueryApiMethod.INSERT) -> google.cloud.bigquery.job.query.QueryJob
Parameters Name Description query
str
SQL query to be executed. Defaults to the standard SQL dialect. Use the job_config
parameter to change dialects.
job_config
Optional[google.cloud.bigquery.job.QueryJobConfig]
Extra configuration options for the job. To override any options that were previously set in the default_query_job_config
given to the Client
constructor, manually set those options to None
, or whatever value is preferred.
job_id
Optional[str]
ID to use for the query job.
job_id_prefix
Optional[str]
The prefix to use for a randomly generated job ID. This parameter will be ignored if a job_id
is also given.
location
Optional[str]
Location where to run the job. Must match the location of the table used in the query as well as the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC. This only applies to making RPC calls. It isn't used to retry failed jobs. This has a reasonable default that should only be overridden with care.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
job_retry
Optional[google.api_core.retry.Retry]
How to retry failed jobs. The default retries rate-limit-exceeded errors. Passing None
disables job retry. Not all jobs can be retried. If job_id
is provided, then the job returned by the query will not be retryable, and an exception will be raised if a non-None
(and non-default) value for job_retry
is also provided. Note that errors aren't detected until result()
is called on the job returned. The job_retry
specified here becomes the default job_retry
for result()
, where it can also be specified.
api_method
Union[str, enums.QueryApiMethod]
Method with which to start the query job. See QueryApiMethod for details on the difference between the query start methods.
Exceptions Type DescriptionTypeError
If job_config
is not an instance of QueryJobConfig class, or if both job_id
and non-None
non-default job_retry
are provided. query_and_wait
query_and_wait(query, *, job_config: typing.Optional[google.cloud.bigquery.job.query.QueryJobConfig] = None, location: typing.Optional[str] = None, project: typing.Optional[str] = None, api_timeout: typing.Optional[float] = None, wait_timeout: typing.Optional[float] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, job_retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, page_size: typing.Optional[int] = None, max_results: typing.Optional[int] = None) -> google.cloud.bigquery.table.RowIterator
Run the query, wait for it to finish, and return the results.
While jobCreationMode=JOB_CREATION_OPTIONAL
is in preview in the jobs.query
REST API, use the default jobCreationMode
unless the environment variable QUERY_PREVIEW_ENABLED=true
. After jobCreationMode
is GA, this method will always use jobCreationMode=JOB_CREATION_OPTIONAL
. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/query
query
str
SQL query to be executed. Defaults to the standard SQL dialect. Use the job_config
parameter to change dialects.
job_config
Optional[google.cloud.bigquery.job.QueryJobConfig]
Extra configuration options for the job. To override any options that were previously set in the default_query_job_config
given to the Client
constructor, manually set those options to None
, or whatever value is preferred.
location
Optional[str]
Location where to run the job. Must match the location of the table used in the query as well as the destination table.
project
Optional[str]
Project ID of the project of where to run the job. Defaults to the client's project.
api_timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
wait_timeout
Optional[float]
The number of seconds to wait for the query to finish. If the query doesn't finish before this timeout, the client attempts to cancel the query.
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC. This only applies to making RPC calls. It isn't used to retry failed jobs. This has a reasonable default that should only be overridden with care.
job_retry
Optional[google.api_core.retry.Retry]
How to retry failed jobs. The default retries rate-limit-exceeded errors. Passing None
disables job retry. Not all jobs can be retried.
page_size
Optional[int]
The maximum number of rows in each page of results from this request. Non-positive values are ignored.
max_results
Optional[int]
The maximum total number of rows from this request.
Exceptions Type DescriptionTypeError
If job_config
is not an instance of QueryJobConfig class. Returns Type Description google.cloud.bigquery.table.RowIterator
Iterator of row data Row-s. During each page, the iterator will have the total_rows
attribute set, which counts the total number of rows **in the result set** (this is distinct from the total number of rows in the current page: iterator.page.num_items
). If the query is a special query that produces no results, e.g. a DDL query, an _EmptyRowIterator
instance is returned. schema_from_json
schema_from_json(
file_or_path: PathType,
) -> typing.List[google.cloud.bigquery.schema.SchemaField]
Takes a file object or file path that contains json that describes a table schema.
Returns Type DescriptionList[SchemaField]
List of SchemaField objects. schema_to_json
schema_to_json(
schema_list: typing.Sequence[google.cloud.bigquery.schema.SchemaField],
destination: PathType,
)
Takes a list of schema field objects.
Serializes the list of schema field objects as json to a file.
Destination is a file path or a file object.
set_iam_policyset_iam_policy(table: typing.Union[google.cloud.bigquery.table.Table, google.cloud.bigquery.table.TableReference, google.cloud.bigquery.table.TableListItem, str], policy: google.api_core.iam.Policy, updateMask: typing.Optional[str] = None, retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None, *, fields: typing.Sequence[str] = ()) -> google.api_core.iam.Policy
Return the access control policy for a table resource.
Returns Type Descriptiongoogle.api_core.iam.Policy
The updated access control policy. update_dataset
update_dataset(dataset: google.cloud.bigquery.dataset.Dataset, fields: typing.Sequence[str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.dataset.Dataset
Change some fields of a dataset.
Use fields
to specify which fields to update. At least one field must be provided. If a field is listed in fields
and is None
in dataset
, it will be deleted.
If dataset.etag
is not None
, the update will only succeed if the dataset on the server has the same ETag. Thus reading a dataset with get_dataset
, changing its fields, and then passing it to update_dataset
will ensure that the changes will only be saved if no modifications to the dataset occurred since the read.
dataset
google.cloud.bigquery.dataset.Dataset
The dataset to update.
fields
Sequence[str]
The properties of dataset
to change. These are strings corresponding to the properties of Dataset. For example, to update the default expiration times, specify both properties in the fields
argument: .. code-block:: python bigquery_client.update_dataset( dataset, [ "default_partition_expiration_ms", "default_table_expiration_ms", ] )
retry
Optional[google.api_core.retry.Retry]
How to retry the RPC.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
update_model(model: google.cloud.bigquery.model.Model, fields: typing.Sequence[str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.model.Model
[Beta] Change some fields of a model.
Use fields
to specify which fields to update. At least one field must be provided. If a field is listed in fields
and is None
in model
, the field value will be deleted.
If model.etag
is not None
, the update will only succeed if the model on the server has the same ETag. Thus reading a model with get_model
, changing its fields, and then passing it to update_model
will ensure that the changes will only be saved if no modifications to the model occurred since the read.
model
google.cloud.bigquery.model.Model
The model to update.
fields
Sequence[str]
The properties of model
to change. These are strings corresponding to the properties of Model. For example, to update the descriptive properties of the model, specify them in the fields
argument: .. code-block:: python bigquery_client.update_model( model, ["description", "friendly_name"] )
retry
Optional[google.api_core.retry.Retry]
A description of how to retry the API call.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
update_routine(routine: google.cloud.bigquery.routine.routine.Routine, fields: typing.Sequence[str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.routine.routine.Routine
[Beta] Change some fields of a routine.
Use fields
to specify which fields to update. At least one field must be provided. If a field is listed in fields
and is None
in routine
, the field value will be deleted.
If xref_etag is not
None
, the update will only succeed if the resource on the server has the same ETag. Thus reading a routine with xref_get_routine, changing its fields, and then passing it to this method will ensure that the changes will only be saved if no modifications to the resource occurred since the read.
Parameters Name Descriptionroutine
google.cloud.bigquery.routine.Routine
The routine to update.
fields
Sequence[str]
The fields of routine
to change, spelled as the Routine properties. For example, to update the description property of the routine, specify it in the fields
argument: .. code-block:: python bigquery_client.update_routine( routine, ["description"] )
retry
Optional[google.api_core.retry.Retry]
A description of how to retry the API call.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
update_table(table: google.cloud.bigquery.table.Table, fields: typing.Sequence[str], retry: google.api_core.retry.retry_unary.Retry = <google.api_core.retry.retry_unary.Retry object>, timeout: typing.Optional[float] = None) -> google.cloud.bigquery.table.Table
Change some fields of a table.
Use fields
to specify which fields to update. At least one field must be provided. If a field is listed in fields
and is None
in table
, the field value will be deleted.
If table.etag
is not None
, the update will only succeed if the table on the server has the same ETag. Thus reading a table with get_table
, changing its fields, and then passing it to update_table
will ensure that the changes will only be saved if no modifications to the table occurred since the read.
table
google.cloud.bigquery.table.Table
The table to update.
fields
Sequence[str]
The fields of table
to change, spelled as the Table properties. For example, to update the descriptive properties of the table, specify them in the fields
argument: .. code-block:: python bigquery_client.update_table( table, ["description", "friendly_name"] )
retry
Optional[google.api_core.retry.Retry]
A description of how to retry the API call.
timeout
Optional[float]
The number of seconds to wait for the underlying HTTP transport before using retry
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-07 UTC."],[],[]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4