A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://cloud.google.com/python/docs/reference/bigframes/2.14.0/bigframes.pandas.Index below:

Class Index (2.14.0) | Python client library

Skip to main content Class Index (2.14.0)

Stay organized with collections Save and categorize content based on your preferences.

Index(data=None, dtype=None, *, name=None, session=None)

Immutable sequence used for indexing and alignment.

The basic object storing axis labels for all objects.

Properties T

Return the transpose, which is by definition self.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0     Ant
1    Bear
2     Cow
dtype: string

>>> s.T
0     Ant
1    Bear
2     Cow
dtype: string

For Index:

>>> idx = bpd.Index([1, 2, 3])
>>> idx.T
Index([1, 2, 3], dtype='Int64')
Returns Type Description bigframes.pandas.Index Index dtype

Return the dtype object of the underlying data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')

>>> idx.dtype
Int64Dtype()
dtypes

Return the dtypes as a Series for the underlying MultiIndex.

Returns Type Description Pandas.Series Pandas.Series of the MultiIndex dtypes. empty

Returns True if the Index is empty, otherwise returns False.

has_duplicates

Check if the Index has duplicate values.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 5, 7, 7])
>>> bool(idx.has_duplicates)
True

>>> idx = bpd.Index([1, 5, 7])
>>> bool(idx.has_duplicates)
False
Returns Type Description bool Whether or not the Index has duplicate values. is_monotonic_decreasing

Return a boolean if the values are equal or decreasing.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> bool(bpd.Index([3, 2, 1]).is_monotonic_decreasing)
True

>>> bool(bpd.Index([3, 2, 2]).is_monotonic_decreasing)
True

>>> bool(bpd.Index([3, 1, 2]).is_monotonic_decreasing)
False
Returns Type Description bool True, if the values monotonically decreasing, otherwise False. is_monotonic_increasing

Return a boolean if the values are equal or increasing.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> bool(bpd.Index([1, 2, 3]).is_monotonic_increasing)
True

>>> bool(bpd.Index([1, 2, 2]).is_monotonic_increasing)
True

>>> bool(bpd.Index([1, 3, 2]).is_monotonic_increasing)
False
Returns Type Description bool True, if the values monotonically increasing, otherwise False. is_unique

Return if the index has unique values.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 5, 7, 7])
>>> idx.is_unique
False

>>> idx = bpd.Index([1, 5, 7])
>>> idx.is_unique
True
Returns Type Description bool True if the index has unique values, otherwise False. name

Returns Index name.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 2, 3], name='x')
>>> idx
Index([1, 2, 3], dtype='Int64', name='x')
>>> idx.name
'x'
Returns Type Description blocks.Label Index or MultiIndex name names

Returns the names of the Index.

Returns Type Description Sequence[blocks.Label] A Sequence of Index or MultiIndex name ndim

Number of dimensions of the underlying data, by definition 1.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0     Ant
1    Bear
2     Cow
dtype: string

>>> s.ndim
1

For Index:

>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')

>>> idx.ndim
1
Returns Type Description int Number or dimensions. nlevels

Integer number of levels in this MultiIndex

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> mi = bpd.MultiIndex.from_arrays([['a'], ['b'], ['c']])
>>> mi
MultiIndex([('a', 'b', 'c')],
           )
>>> mi.nlevels
3
Returns Type Description int Number of levels. query_job

BigQuery job metadata for the most recent query.

shape

Return a tuple of the shape of the underlying data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')

>>> idx.shape
(3,)
Returns Type Description Tuple[int] A Tuple of integers representing the shape. size

Return the number of elements in the underlying data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

For Series:

>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0     Ant
1    Bear
2     Cow
dtype: string

For Index:

>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
Returns Type Description int Number of elements values

Return an array representing the data in the Index.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')

>>> idx.values
array([1, 2, 3])
Returns Type Description array Numpy.ndarray or ExtensionArray Methods __setitem__
__setitem__(key, value) -> None

Index objects are immutable. Use Index constructor to create modified Index.

all

Return whether all elements are Truthy.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

True, because nonzero integers are considered True.

>>> bool(bpd.Index([1, 2, 3]).all())
True

False, because 0 is considered False.

>>> bool(bpd.Index([0, 1, 2]).all())
False
Exceptions Type Description TypeError MultiIndex with more than 1 level does not support all. Returns Type Description bool A single element array-like may be converted to bool. any

Return whether any element is Truthy.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> index = bpd.Index([0, 1, 2])
>>> bool(index.any())
True

>>> index = bpd.Index([0, 0, 0])
>>> bool(index.any())
False
Exceptions Type Description TypeError MultiIndex with more than 1 level does not support any. Returns Type Description bool A single element array-like may be converted to bool. argmax

Return int position of the largest value in the Series.

If the maximum is achieved in multiple locations, the first row position is returned.

Examples:

Consider dataset containing cereal calories

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
...                'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
>>> s
Corn Flakes              100.0
Almond Delight           110.0
Cinnamon Toast Crunch    120.0
Cocoa Puff               110.0
dtype: Float64

>>> int(s.argmax())
2

>>> int(s.argmin())
0

The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.

Returns Type Description int Row position of the maximum value. argmin

Return int position of the smallest value in the series.

If the minimum is achieved in multiple locations, the first row position is returned.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Consider dataset containing cereal calories

>>> s = bpd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
...                'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
>>> s
Corn Flakes              100.0
Almond Delight           110.0
Cinnamon Toast Crunch    120.0
Cocoa Puff               110.0
dtype: Float64

>>> int(s.argmax())
2

>>> int(s.argmin())
0

The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.

Returns Type Description int Row position of the minimum value. astype
astype(
    dtype, *, errors: typing.Literal["raise", "null"] = "raise"
) -> bigframes.core.indexes.base.Index

Create an Index with values cast to dtypes.

The class of a new Index is determined by dtype. When conversion is impossible, a TypeError exception is raised.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
Parameters Name Description dtype str, data type, or pandas.ExtensionDtype

A dtype supported by BigQuery DataFrame include 'boolean', 'Float64', 'Int64', 'int64[pyarrow]', 'string', 'string[pyarrow]', 'timestamp[us, tz=UTC][pyarrow]', 'timestamp[us][pyarrow]', 'date32[day][pyarrow]', 'time64[us][pyarrow]'. A pandas.ExtensionDtype include pandas.BooleanDtype(), pandas.Float64Dtype(), pandas.Int64Dtype(), pandas.StringDtype(storage="pyarrow"), pd.ArrowDtype(pa.date32()), pd.ArrowDtype(pa.time64("us")), pd.ArrowDtype(pa.timestamp("us")), pd.ArrowDtype(pa.timestamp("us", tz="UTC")).

errors {'raise', 'null'}, default 'raise'

Control raising of exceptions on invalid data for provided dtype. If 'raise', allow exceptions to be raised if any value fails cast If 'null', will assign null value if value fails cast

Exceptions Type Description ValueError If errors is not one of raise. TypeError MultiIndex with more than 1 level does not support astype. Returns Type Description bigframes.pandas.Index Index with values cast to specified dtype. copy
copy(name: typing.Optional[typing.Hashable] = None)

Make a copy of this object.

Name is set on the new object.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index(['a', 'b', 'c'])
>>> new_idx = idx.copy()
>>> idx is new_idx
False
Parameter Name Description name Label, optional

Set name for new object.

Returns Type Description bigframes.pandas.Index Index reference to new object, which is a copy of this object. drop
drop(labels: typing.Any) -> bigframes.core.indexes.base.Index

Make new Index with passed list of labels deleted.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index(['a', 'b', 'c'])
>>> idx.drop(['a'])
Index(['b', 'c'], dtype='string')
Returns Type Description bigframes.pandas.Index Will be same type as self. drop_duplicates
drop_duplicates(*, keep: str = "first") -> bigframes.core.indexes.base.Index

Return Index with duplicate values removed.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Generate an pandas.Index with duplicate values.

>>> idx = bpd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'])

The keep parameter controls which duplicate values are removed. The value first keeps the first occurrence for each set of duplicated entries. The default value of keep is first.

>>> idx.drop_duplicates(keep='first')
Index(['lama', 'cow', 'beetle', 'hippo'], dtype='string')

The value last keeps the last occurrence for each set of duplicated entries.

>>> idx.drop_duplicates(keep='last')
Index(['cow', 'beetle', 'lama', 'hippo'], dtype='string')

The value False discards all sets of duplicated entries.

>>> idx.drop_duplicates(keep=False)
Index(['cow', 'beetle', 'hippo'], dtype='string')
Parameter Name Description keep {'first', 'last', False}, default 'first'

One of: 'first' : Drop duplicates except for the first occurrence. 'last' : Drop duplicates except for the last occurrence. False : Drop all duplicates.

dropna
dropna(
    how: typing.Literal["all", "any"] = "any",
) -> bigframes.core.indexes.base.Index

Return Index without NA/NaN values.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1, np.nan, 3])
>>> idx.dropna()
Index([1.0, 3.0], dtype='Float64')
Parameter Name Description how {'any', 'all'}, default 'any'

If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Exceptions Type Description ValueError If how is not any or all fillna
fillna(value=None) -> bigframes.core.indexes.base.Index

Fill NA/NaN values with the specified value.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([np.nan, np.nan, 3])
>>> idx.fillna(0)
Index([0.0, 0.0, 3.0], dtype='Float64')
Parameter Name Description value scalar

Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

Exceptions Type Description TypeError MultiIndex with more than 1 level does not support fillna. from_frame
from_frame(
    frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame],
) -> bigframes.core.indexes.base.Index

Make a MultiIndex from a DataFrame.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
...                     ['NJ', 'Temp'], ['NJ', 'Precip']],
...                    columns=['a', 'b'])
>>> df
    a       b
0  HI    Temp
1  HI  Precip
2  NJ    Temp
3  NJ  Precip
<BLANKLINE>
[4 rows x 2 columns]

>>> bpd.MultiIndex.from_frame(df)
Index([0, 1, 2, 3], dtype='Int64')
Returns Type Description bigframes.pandas.Index The Index representation of the given Series or DataFrame. get_level_values
get_level_values(level) -> bigframes.core.indexes.base.Index

Return an Index of values for requested level.

This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index(list('abc'))
>>> idx
Index(['a', 'b', 'c'], dtype='string')

Get level values by supplying level as integer:

>>> idx.get_level_values(0)
Index(['a', 'b', 'c'], dtype='string')
Parameter Name Description level int or str

It is either the integer position or the name of the level.

Returns Type Description bigframes.pandas.Index Calling object, as there is only one level in the Index. get_loc
get_loc(key) -> typing.Union[int, slice, bigframes.series.Series]

Get integer location, slice or boolean mask for requested label.

Exceptions Type Description NotImplementedError If the index has more than one level. KeyError If the key is not found in the index. isin
isin(values) -> bigframes.core.indexes.base.Index

Return a boolean array where the index values are in values.

Compute boolean array to check whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([1,2,3])
>>> idx
Index([1, 2, 3], dtype='Int64')

Check whether each index value in a list of values.

>>> idx.isin([1, 4])
Index([True, False, False], dtype='boolean')

>>> midx = bpd.MultiIndex.from_arrays([[1,2,3],
...                                   ['red', 'blue', 'green']],
...                                   names=('number', 'color'))
>>> midx
MultiIndex([(1,   'red'),
            (2,  'blue'),
            (3, 'green')],
           names=['number', 'color'])
Parameter Name Description values set or list-like

Sought values.

Exceptions Type Description TypeError If object passed to isin() is not a list-like item

Return the first element of the underlying data as a Python scalar.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([1], index=['a'])
>>> s.index.item()
'a'
Exceptions Type Description ValueError If the data is not length = 1. Returns Type Description scalar The first element of Index. max

Return the maximum value of the Index.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([3, 2, 1])
>>> int(idx.max())
3

>>> idx = bpd.Index(['c', 'b', 'a'])
>>> idx.max()
'c'
Returns Type Description scalar Maximum value. min

Return the minimum value of the Index.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([3, 2, 1])
>>> int(idx.min())
1

>>> idx = bpd.Index(['c', 'b', 'a'])
>>> idx.min()
'a'
Returns Type Description scalar Minimum value. nunique

Return number of unique elements in the object.

Excludes NA values by default.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 3, 5, 7, 7])
>>> s
0    1
1    3
2    5
3    7
4    7
dtype: Int64

>>> int(s.nunique())
4
Returns Type Description int Number of unique elements rename

Alter Index or MultiIndex name.

Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index(['A', 'C', 'A', 'B'], name='score')
>>> idx.rename('grade')
Index(['A', 'C', 'A', 'B'], dtype='string', name='grade')
Parameters Name Description name label or list of labels

Name(s) to set.

inplace bool

Default False. Modifies the object directly, instead of creating a new Index or MultiIndex.

Exceptions Type Description ValueError If name is not the same length as levels. Returns Type Description bigframes.pandas.Index None The same type as the caller or None if inplace=True. sort_values
sort_values(
    *, inplace: bool = False, ascending: bool = True, na_position: str = "last"
) -> bigframes.core.indexes.base.Index

Return a sorted copy of the index.

Return a sorted copy of the index, and optionally return the indices that sorted the index itself.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index([10, 100, 1, 1000])
>>> idx
Index([10, 100, 1, 1000], dtype='Int64')

Sort values in ascending order (default behavior).

>>> idx.sort_values()
Index([1, 10, 100, 1000], dtype='Int64')
Parameters Name Description ascending bool, default True

Should the index values be sorted in an ascending order.

na_position {'first' or 'last'}, default 'last'

Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end.

Exceptions Type Description ValueError If no_position is not one of first or last. Returns Type Description pandas.Index Sorted copy of the index. to_numpy
to_numpy(dtype=None, *, allow_large_results=None, **kwargs) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

Parameter Name Description allow_large_results bool, default None

If not None, overrides the global setting to allow or disallow large query results over the default size limit of 10 GB.

to_pandas

Gets the Index as a pandas Index.

Parameters Name Description allow_large_results bool, default None

If not None, overrides the global setting to allow or disallow large query results over the default size limit of 10 GB.

dry_run bool, default False

If this argument is true, this method will not process the data. Instead, it returns a Pandas series containing dtype and the amount of bytes to be processed.

Returns Type Description pandas.Index pandas.Series A pandas Index with all of the labels from this Index. If dry run is set to True, returns a Series containing dry run statistics. to_series
to_series(
    index: typing.Optional[bigframes.core.indexes.base.Index] = None,
    name: typing.Optional[typing.Hashable] = None,
) -> bigframes.series.Series

Create a Series with both index and values equal to the index keys.

Useful with map for returning an indexer based on an index.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> idx = bpd.Index(['Ant', 'Bear', 'Cow'], name='animal')

By default, the original index and original name is reused.

>>> idx.to_series()
animal
Ant      Ant
Bear    Bear
Cow      Cow
Name: animal, dtype: string

To enforce a new index, specify new labels to index:

>>> idx.to_series(index=[0, 1, 2])
0     Ant
1    Bear
2     Cow
Name: animal, dtype: string

To override the name of the resulting column, specify name:

>>> idx.to_series(name='zoo')
animal
Ant      Ant
Bear    Bear
Cow      Cow
Name: zoo, dtype: string
Parameters Name Description index Index, optional

Index of resulting Series. If None, defaults to original index.

name str, optional

Name of resulting Series. If None, defaults to name of original index.

transpose
transpose() -> bigframes.core.indexes.base.Index

Return the transpose, which is by definition self.

unique
unique(
    level: typing.Optional[typing.Union[typing.Hashable, int]] = None,
) -> bigframes.core.indexes.base.Index

Returns unique values in the index.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 1, 2, 3, 3])
>>> idx.unique()
Index([1, 2, 3], dtype='Int64')
Parameter Name Description level int or hashable, optional

Only return values from specified level (for MultiIndex). If int, gets the level by integer position, else by level name.

value_counts
value_counts(
    normalize: bool = False,
    sort: bool = True,
    ascending: bool = False,
    *,
    dropna: bool = True
)

Return a Series containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> index = bpd.Index([3, 1, 2, 3, 4, np.nan])
>>> index.value_counts()
3.0    2
1.0    1
2.0    1
4.0    1
Name: count, dtype: Int64

With normalize set to True, returns the relative frequency by dividing all values by the sum of values.

>>> s = bpd.Series([3, 1, 2, 3, 4, np.nan])
>>> s.value_counts(normalize=True)
3.0    0.4
1.0    0.2
2.0    0.2
4.0    0.2
Name: proportion, dtype: Float64

dropna

With dropna set to False we can also see NaN index values.

>>> s.value_counts(dropna=False)
3.0     2
1.0     1
2.0     1
4.0     1
<NA>    1
Name: count, dtype: Int64
Parameters Name Description normalize bool, default False

If True, then the object returned will contain the relative frequencies of the unique values.

sort bool, default True

Sort by frequencies.

ascending bool, default False

Sort in ascending order.

dropna bool, default True

Don't include counts of NaN.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025-08-12 UTC.

[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-12 UTC."],[],[]]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4