Stay organized with collections Save and categorize content based on your preferences.
KFold(n_splits: int = 5, *, random_state: typing.Optional[int] = None)
K-Fold cross-validator.
Split data in train/test sets. Split dataset into k consecutive folds.
Each fold is then used once as a validation while the k - 1 remaining folds form the training set.
Examples:
>>> import bigframes.pandas as bpd
>>> from bigframes.ml.model_selection import KFold
>>> bpd.options.display.progress_bar = None
>>> X = bpd.DataFrame({"feat0": [1, 3, 5], "feat1": [2, 4, 6]})
>>> y = bpd.DataFrame({"label": [1, 2, 3]})
>>> kf = KFold(n_splits=3, random_state=42)
>>> for i, (X_train, X_test, y_train, y_test) in enumerate(kf.split(X, y)):
... print(f"Fold {i}:")
... print(f" X_train: {X_train}")
... print(f" X_test: {X_test}")
... print(f" y_train: {y_train}")
... print(f" y_test: {y_test}")
...
Fold 0:
X_train: feat0 feat1
1 3 4
2 5 6
<BLANKLINE>
[2 rows x 2 columns]
X_test: feat0 feat1
0 1 2
<BLANKLINE>
[1 rows x 2 columns]
y_train: label
1 2
2 3
<BLANKLINE>
[2 rows x 1 columns]
y_test: label
0 1
<BLANKLINE>
[1 rows x 1 columns]
Fold 1:
X_train: feat0 feat1
0 1 2
2 5 6
<BLANKLINE>
[2 rows x 2 columns]
X_test: feat0 feat1
1 3 4
<BLANKLINE>
[1 rows x 2 columns]
y_train: label
0 1
2 3
<BLANKLINE>
[2 rows x 1 columns]
y_test: label
1 2
<BLANKLINE>
[1 rows x 1 columns]
Fold 2:
X_train: feat0 feat1
0 1 2
1 3 4
<BLANKLINE>
[2 rows x 2 columns]
X_test: feat0 feat1
2 5 6
<BLANKLINE>
[1 rows x 2 columns]
y_train: label
0 1
1 2
<BLANKLINE>
[2 rows x 1 columns]
y_test: label
2 3
<BLANKLINE>
[1 rows x 1 columns]
Parameters Name Description n_splits
int
Number of folds. Must be at least 2. Default to 5.
random_state
Optional[int]
A seed to use for randomly choosing the rows of the split. If not set, a random split will be generated each time. Default to None.
Methods get_n_splitsReturns the number of splitting iterations in the cross-validator.
Returns Type Descriptionint
the number of splitting iterations in the cross-validator. split
split(
X: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
],
y: typing.Optional[
typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
]
] = None,
) -> typing.Generator[
tuple[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series, NoneType],
...,
],
None,
None,
]
Generate indices to split data into training and test set.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-12 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-12 UTC."],[],[]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4