Stay organized with collections Save and categorize content based on your preferences.
Index(data=None, dtype=None, *, name=None, session=None)
Immutable sequence used for indexing and alignment.
The basic object storing axis labels for all objects.
Properties TReturn the transpose, which is by definition self.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0 Ant
1 Bear
2 Cow
dtype: string
>>> s.T
0 Ant
1 Bear
2 Cow
dtype: string
For Index:
>>> idx = bpd.Index([1, 2, 3])
>>> idx.T
Index([1, 2, 3], dtype='Int64')
Returns Type Description bigframes.pandas.Index
Index dtype
Return the dtype object of the underlying data.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
>>> idx.dtype
Int64Dtype()
dtypes
Return the dtypes as a Series for the underlying MultiIndex.
Returns Type DescriptionPandas.Series
Pandas.Series of the MultiIndex dtypes. empty
Returns True if the Index is empty, otherwise returns False.
has_duplicatesCheck if the Index has duplicate values.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 5, 7, 7])
>>> bool(idx.has_duplicates)
True
>>> idx = bpd.Index([1, 5, 7])
>>> bool(idx.has_duplicates)
False
Returns Type Description bool
Whether or not the Index has duplicate values. is_monotonic_decreasing
Return a boolean if the values are equal or decreasing.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> bool(bpd.Index([3, 2, 1]).is_monotonic_decreasing)
True
>>> bool(bpd.Index([3, 2, 2]).is_monotonic_decreasing)
True
>>> bool(bpd.Index([3, 1, 2]).is_monotonic_decreasing)
False
Returns Type Description bool
True, if the values monotonically decreasing, otherwise False. is_monotonic_increasing
Return a boolean if the values are equal or increasing.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> bool(bpd.Index([1, 2, 3]).is_monotonic_increasing)
True
>>> bool(bpd.Index([1, 2, 2]).is_monotonic_increasing)
True
>>> bool(bpd.Index([1, 3, 2]).is_monotonic_increasing)
False
Returns Type Description bool
True, if the values monotonically increasing, otherwise False. is_unique
Return if the index has unique values.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 5, 7, 7])
>>> idx.is_unique
False
>>> idx = bpd.Index([1, 5, 7])
>>> idx.is_unique
True
Returns Type Description bool
True if the index has unique values, otherwise False. name
Returns Index name.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 2, 3], name='x')
>>> idx
Index([1, 2, 3], dtype='Int64', name='x')
>>> idx.name
'x'
Returns Type Description blocks.Label
Index or MultiIndex name names
Returns the names of the Index.
Returns Type DescriptionSequence[blocks.Label]
A Sequence of Index or MultiIndex name ndim
Number of dimensions of the underlying data, by definition 1.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0 Ant
1 Bear
2 Cow
dtype: string
>>> s.ndim
1
For Index:
>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
>>> idx.ndim
1
Returns Type Description int
Number or dimensions. nlevels
Integer number of levels in this MultiIndex
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> mi = bpd.MultiIndex.from_arrays([['a'], ['b'], ['c']])
>>> mi
MultiIndex([('a', 'b', 'c')],
)
>>> mi.nlevels
3
Returns Type Description int
Number of levels. query_job
BigQuery job metadata for the most recent query.
shapeReturn a tuple of the shape of the underlying data.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
>>> idx.shape
(3,)
Returns Type Description Tuple[int]
A Tuple of integers representing the shape. size
Return the number of elements in the underlying data.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
For Series:
>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0 Ant
1 Bear
2 Cow
dtype: string
For Index:
>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
Returns Type Description int
Number of elements values
Return an array representing the data in the Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
>>> idx.values
array([1, 2, 3])
Returns Type Description array
Numpy.ndarray or ExtensionArray Methods all
Return whether all elements are Truthy.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
True, because nonzero integers are considered True.
>>> bool(bpd.Index([1, 2, 3]).all())
True
False, because 0 is considered False.
>>> bool(bpd.Index([0, 1, 2]).all())
False
Exceptions Type Description TypeError
MultiIndex with more than 1 level does not support all
. Returns Type Description bool
A single element array-like may be converted to bool. any
Return whether any element is Truthy.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> index = bpd.Index([0, 1, 2])
>>> bool(index.any())
True
>>> index = bpd.Index([0, 0, 0])
>>> bool(index.any())
False
Exceptions Type Description TypeError
MultiIndex with more than 1 level does not support any
. Returns Type Description bool
A single element array-like may be converted to bool. argmax
Return int position of the largest value in the Series.
If the maximum is achieved in multiple locations, the first row position is returned.
Examples:
Consider dataset containing cereal calories
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
>>> s
Corn Flakes 100.0
Almond Delight 110.0
Cinnamon Toast Crunch 120.0
Cocoa Puff 110.0
dtype: Float64
>>> int(s.argmax())
2
>>> int(s.argmin())
0
The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.
Returns Type Descriptionint
Row position of the maximum value. argmin
Return int position of the smallest value in the series.
If the minimum is achieved in multiple locations, the first row position is returned.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Consider dataset containing cereal calories
>>> s = bpd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
>>> s
Corn Flakes 100.0
Almond Delight 110.0
Cinnamon Toast Crunch 120.0
Cocoa Puff 110.0
dtype: Float64
>>> int(s.argmax())
2
>>> int(s.argmin())
0
The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.
Returns Type Descriptionint
Row position of the minimum value. astype
astype(
dtype: typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(76, 38)[pyarrow]",
"binary[pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.dtypes.dtypes.ArrowDtype,
geopandas.array.GeometryDtype,
],
*,
errors: typing.Literal["raise", "null"] = "raise"
) -> bigframes.core.indexes.base.Index
Create an Index with values cast to dtypes.
The class of a new Index is determined by dtype. When conversion is impossible, a TypeError exception is raised.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, 2, 3])
>>> idx
Index([1, 2, 3], dtype='Int64')
Parameters Name Description dtype
str or pandas.ExtensionDtype
A dtype supported by BigQuery DataFrame include 'boolean'
, 'Float64'
, 'Int64'
, 'int64[pyarrow]'
, 'string'
, 'string[pyarrow]'
, 'timestamp[us, tz=UTC][pyarrow]'
, 'timestamp[us][pyarrow]'
, 'date32[day][pyarrow]'
, 'time64[us][pyarrow]'
. A pandas.ExtensionDtype include pandas.BooleanDtype()
, pandas.Float64Dtype()
, pandas.Int64Dtype()
, pandas.StringDtype(storage="pyarrow")
, pd.ArrowDtype(pa.date32())
, pd.ArrowDtype(pa.time64("us"))
, pd.ArrowDtype(pa.timestamp("us"))
, pd.ArrowDtype(pa.timestamp("us", tz="UTC"))
.
errors
{'raise', 'null'}, default 'raise'
Control raising of exceptions on invalid data for provided dtype. If 'raise', allow exceptions to be raised if any value fails cast If 'null', will assign null value if value fails cast
Exceptions Type DescriptionValueError
If errors
is not one of raise
. TypeError
MultiIndex with more than 1 level does not support astype
. Returns Type Description bigframes.pandas.Index
Index with values cast to specified dtype. copy
copy(name: typing.Optional[typing.Hashable] = None)
Make a copy of this object.
Name is set on the new object.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index(['a', 'b', 'c'])
>>> new_idx = idx.copy()
>>> idx is new_idx
False
Parameter Name Description name
Label, optional
Set name for new object.
Returns Type Descriptionbigframes.pandas.Index
Index reference to new object, which is a copy of this object. drop
drop(labels: typing.Any) -> bigframes.core.indexes.base.Index
Make new Index with passed list of labels deleted.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index(['a', 'b', 'c'])
>>> idx.drop(['a'])
Index(['b', 'c'], dtype='string')
Returns Type Description bigframes.pandas.Index
Will be same type as self. drop_duplicates
drop_duplicates(*, keep: str = "first") -> bigframes.core.indexes.base.Index
Return Index with duplicate values removed.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Generate an pandas.Index with duplicate values.
>>> idx = bpd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'])
The keep parameter controls which duplicate values are removed. The value first
keeps the first occurrence for each set of duplicated entries. The default value of keep is first
.
>>> idx.drop_duplicates(keep='first')
Index(['lama', 'cow', 'beetle', 'hippo'], dtype='string')
The value last
keeps the last occurrence for each set of duplicated entries.
>>> idx.drop_duplicates(keep='last')
Index(['cow', 'beetle', 'lama', 'hippo'], dtype='string')
The value False
discards all sets of duplicated entries.
>>> idx.drop_duplicates(keep=False)
Index(['cow', 'beetle', 'hippo'], dtype='string')
Parameter Name Description keep
{'first', 'last', False
}, default 'first'
One of: 'first' : Drop duplicates except for the first occurrence. 'last' : Drop duplicates except for the last occurrence. False
: Drop all duplicates.
dropna(
how: typing.Literal["all", "any"] = "any"
) -> bigframes.core.indexes.base.Index
Return Index without NA/NaN values.
Examples:
>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1, np.nan, 3])
>>> idx.dropna()
Index([1.0, 3.0], dtype='Float64')
Parameter Name Description how
{'any', 'all'}, default 'any'
If the Index is a MultiIndex, drop the value when any or all levels are NaN.
Exceptions Type DescriptionValueError
If how
is not any
or all
fillna
fillna(value=None) -> bigframes.core.indexes.base.Index
Fill NA/NaN values with the specified value.
Examples:
>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([np.nan, np.nan, 3])
>>> idx.fillna(0)
Index([0.0, 0.0, 3.0], dtype='Float64')
Parameter Name Description value
scalar
Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.
Exceptions Type DescriptionTypeError
MultiIndex with more than 1 level does not support fillna
. from_frame
from_frame(
frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame]
) -> bigframes.core.indexes.base.Index
Make a MultiIndex from a DataFrame.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> df = bpd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
... ['NJ', 'Temp'], ['NJ', 'Precip']],
... columns=['a', 'b'])
>>> df
a b
0 HI Temp
1 HI Precip
2 NJ Temp
3 NJ Precip
<BLANKLINE>
[4 rows x 2 columns]
>>> bpd.MultiIndex.from_frame(df)
Index([0, 1, 2, 3], dtype='Int64')
Returns Type Description bigframes.pandas.Index
The Index representation of the given Series or DataFrame. get_level_values
get_level_values(level) -> bigframes.core.indexes.base.Index
Return an Index of values for requested level.
This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index(list('abc'))
>>> idx
Index(['a', 'b', 'c'], dtype='string')
Get level values by supplying level as integer:
>>> idx.get_level_values(0)
Index(['a', 'b', 'c'], dtype='string')
Parameter Name Description level
int or str
It is either the integer position or the name of the level.
Returns Type Descriptionbigframes.pandas.Index
Calling object, as there is only one level in the Index. isin
isin(values) -> bigframes.core.indexes.base.Index
Return a boolean array where the index values are in values
.
Compute boolean array to check whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([1,2,3])
>>> idx
Index([1, 2, 3], dtype='Int64')
Check whether each index value in a list of values.
>>> idx.isin([1, 4])
Index([True, False, False], dtype='boolean')
>>> midx = bpd.MultiIndex.from_arrays([[1,2,3],
... ['red', 'blue', 'green']],
... names=('number', 'color'))
>>> midx
MultiIndex([(1, 'red'),
(2, 'blue'),
(3, 'green')],
names=['number', 'color'])
Parameter Name Description values
set or list-like
Sought values.
Exceptions Type DescriptionTypeError
If object passed to isin()
is not a list-like max
Return the maximum value of the Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([3, 2, 1])
>>> int(idx.max())
3
>>> idx = bpd.Index(['c', 'b', 'a'])
>>> idx.max()
'c'
Returns Type Description scalar
Maximum value. min
Return the minimum value of the Index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([3, 2, 1])
>>> int(idx.min())
1
>>> idx = bpd.Index(['c', 'b', 'a'])
>>> idx.min()
'a'
Returns Type Description scalar
Minimum value. nunique
Return number of unique elements in the object.
Excludes NA values by default.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([1, 3, 5, 7, 7])
>>> s
0 1
1 3
2 5
3 7
4 7
dtype: Int64
>>> int(s.nunique())
4
Returns Type Description int
Number of unique elements rename
rename(
name: typing.Union[str, typing.Sequence[str]]
) -> bigframes.core.indexes.base.Index
Alter Index or MultiIndex name.
Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index(['A', 'C', 'A', 'B'], name='score')
>>> idx.rename('grade')
Index(['A', 'C', 'A', 'B'], dtype='string', name='grade')
Parameter Name Description name
label or list of labels
Name(s) to set.
Exceptions Type DescriptionValueError
If name
is not the same length as levels. Returns Type Description bigframes.pandas.Index
The same type as the caller. sort_values
sort_values(*, ascending: bool = True, na_position: str = "last")
Return a sorted copy of the index.
Return a sorted copy of the index, and optionally return the indices that sorted the index itself.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index([10, 100, 1, 1000])
>>> idx
Index([10, 100, 1, 1000], dtype='Int64')
Sort values in ascending order (default behavior).
>>> idx.sort_values()
Index([1, 10, 100, 1000], dtype='Int64')
Parameters Name Description ascending
bool, default True
Should the index values be sorted in an ascending order.
na_position
{'first' or 'last'}, default 'last'
Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end.
Exceptions Type DescriptionValueError
If no_position
is not one of first
or last
. Returns Type Description pandas.Index
Sorted copy of the index. to_numpy
to_numpy(dtype=None, **kwargs) -> numpy.ndarray
A NumPy ndarray representing the values in this Series or Index.
to_pandasto_pandas() -> pandas.core.indexes.base.Index
Gets the Index as a pandas Index.
Returns Type Descriptionpandas.Index
A pandas Index with all of the labels from this Index. to_series
to_series(
index: typing.Optional[bigframes.core.indexes.base.Index] = None,
name: typing.Optional[typing.Hashable] = None,
) -> bigframes.series.Series
Create a Series with both index and values equal to the index keys.
Useful with map for returning an indexer based on an index.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> idx = bpd.Index(['Ant', 'Bear', 'Cow'], name='animal')
By default, the original index and original name is reused.
>>> idx.to_series()
animal
Ant Ant
Bear Bear
Cow Cow
Name: animal, dtype: string
To enforce a new index, specify new labels to index:
>>> idx.to_series(index=[0, 1, 2])
0 Ant
1 Bear
2 Cow
Name: animal, dtype: string
To override the name of the resulting column, specify name:
>>> idx.to_series(name='zoo')
animal
Ant Ant
Bear Bear
Cow Cow
Name: zoo, dtype: string
Parameters Name Description index
Index, optional
Index of resulting Series. If None, defaults to original index.
name
str, optional
Name of resulting Series. If None, defaults to name of original index.
transposetranspose() -> bigframes.core.indexes.base.Index
Return the transpose, which is by definition self.
value_countsvalue_counts(
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
*,
dropna: bool = True
)
Return a Series containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.
Examples:
>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None
>>> index = bpd.Index([3, 1, 2, 3, 4, np.nan])
>>> index.value_counts()
3.0 2
1.0 1
2.0 1
4.0 1
Name: count, dtype: Int64
With normalize set to True, returns the relative frequency by dividing all values by the sum of values.
>>> s = bpd.Series([3, 1, 2, 3, 4, np.nan])
>>> s.value_counts(normalize=True)
3.0 0.4
1.0 0.2
2.0 0.2
4.0 0.2
Name: proportion, dtype: Float64
dropna
With dropna set to False we can also see NaN index values.
>>> s.value_counts(dropna=False)
3.0 2
1.0 1
2.0 1
4.0 1
<NA> 1
Name: count, dtype: Int64
Parameters Name Description normalize
bool, default False
If True, then the object returned will contain the relative frequencies of the unique values.
sort
bool, default True
Sort by frequencies.
ascending
bool, default False
Sort in ascending order.
dropna
bool, default True
Don't include counts of NaN.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-12 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-12 UTC."],[],[]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4