Stay organized with collections Save and categorize content based on your preferences.
N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure
Properties dtAccessor object for datetime-like properties of the Series values.
dtypeReturn the dtype object of the underlying data.
dtypesReturn the dtype object of the underlying data.
emptyIndicates whether Series/DataFrame is empty.
True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0.
Note: If Series/DataFrame contains only NA values, it is still not considered empty. Returns Type Descriptionbool
If Series/DataFrame is empty, return True, if not return False. iloc
Purely integer-location based indexing for selection by position.
.iloc[]
is primarily integer position based (from 0
to length-1
of the axis), but may also be used with a boolean array.
Allowed inputs are:
5
.[4, 3, 0]
.1:7
.callable
function with one argument (the calling Series or DataFrame) that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value.(0, 1)
..iloc
will raise IndexError
if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).
The index (axis labels) of the Series.
is_monotonic_decreasingReturn boolean if values in the object are monotonically decreasing.
is_monotonic_increasingReturn boolean if values in the object are monotonically increasing.
locAccess a group of rows and columns by label(s) or a boolean array.
.loc[]
is primarily label based, but may also be used with a boolean array.
Allowed inputs are:
5
or 'a'
, (note that 5
is interpreted as a label of the index, and never as an integer position along the index).['a', 'b', 'c']
.[True, False, True]
.'a':'f'
. Note: contrary to usual python slices, both the start and the stop are included.callable
function with one argument (the calling Series or DataFrame) that returns valid output for indexing (one of the above).NotImplementError
if the inputs are not supported. name
Return the name of the Series.
The name of a Series becomes its index or column name if it is used to form a DataFrame. It is also used whenever displaying the Series using the interpreter.
Returns Type Descriptionhashable object
The name of the Series, also the column name if part of a DataFrame. ndim
Return an int representing the number of axes / array dimensions.
Returns Type Descriptionint
Return 1 if Series. Otherwise return 2 if DataFrame. query_job
BigQuery job metadata for the most recent query.
shapeReturn a tuple of the shape of the underlying data.
sizeReturn an int representing the number of elements in this object.
Returns Type Descriptionint
Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. str
Vectorized string functions for Series and Index.
NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.
valuesAPI documentation for values
property.
__array_ufunc__(
ufunc: numpy.ufunc, method: str, *inputs, **kwargs
) -> bigframes.series.Series
Used to support numpy ufuncs. See: https://numpy.org/doc/stable/reference/ufuncs.html
__rmatmul__Matrix multiplication using binary @
operator in Python>=3.5.
abs() -> bigframes.series.Series
Return a Series/DataFrame with absolute numeric value of each element.
This function only applies to elements that are all numeric.
addadd(other: float | int | Series) -> Series
Return addition of Series and other, element-wise (binary operator add).
Equivalent to series + other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. add_prefix
add_prefix(prefix: str, axis: int | str | None = None) -> Series
Prefix labels with string prefix
.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
Parameters Name Descriptionprefix
str
The string to add before each label.
axis
int or str or None, default None
{{0 or 'index', 1 or 'columns', None}}
, default None. Axis to add prefix on.
add_suffix(suffix: str, axis: int | str | None = None) -> Series
Suffix labels with string suffix
.
For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.
aggagg(func: str | typing.Sequence[str]) -> scalars.Scalar | Series
Aggregate using one or more operations over the specified axis.
Parameter Name Descriptionfunc
function
Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. ['sum', 'mean']
.
scalar or Series
Aggregated results all
Return whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a Series or along a DataFrame axis that is False or equivalent (e.g. zero or empty).
Returns Type Descriptionscalar or Series
If level is specified, then, Series is returned; otherwise, scalar is returned. any
Return whether any element is True, potentially over an axis.
Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).
Returns Type Descriptionscalar or Series
If level is specified, then, Series is returned; otherwise, scalar is returned. apply
apply(func) -> bigframes.series.Series
Invoke function on values of Series.
Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.
Parameter Name Descriptionfunc
function
Python function or NumPy ufunc to apply.
Returns Type Descriptionbigframes.series.Series
If func returns a Series object the result will be a DataFrame. argmax
Return int position of the smallest value in the Series.
If the minimum is achieved in multiple locations, the first row position is returned.
Returns Type DescriptionSeries
Row position of the maximum value. argmin
Return int position of the largest value in the Series.
If the maximum is achieved in multiple locations, the first row position is returned.
Returns Type DescriptionSeries
Row position of the minimum value. astype
astype(
dtype: typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.arrays.arrow.dtype.ArrowDtype,
]
) -> bigframes.series.Series
Cast a pandas object to a specified dtype dtype
.
dtype
str or pandas.ExtensionDtype
A dtype supported by BigQuery DataFrame include 'boolean','Float64','Int64', 'string', 'tring[pyarrow]','timestamp[us, tz=UTC][pyarrow]', 'timestampus][pyarrow]
','date32day][pyarrow]
','time64us][pyarrow]
' A pandas.ExtensionDtype include pandas.BooleanDtype(), pandas.Float64Dtype(), pandas.Int64Dtype(), pandas.StringDtype(storage="pyarrow"), pd.ArrowDtype(pa.date32()), pd.ArrowDtype(pa.time64("us")), pd.ArrowDtype(pa.timestamp("us")), pd.ArrowDtype(pa.timestamp("us", tz="UTC")).
between(left, right, inclusive="both")
Return boolean Series equivalent to left <= series <= right.
This function returns a boolean vector containing True
wherever the corresponding Series element is between the boundary values left
and right
. NA values are treated as False
.
left
scalar or list-like
Left boundary.
right
scalar or list-like
Right boundary.
inclusive
{"both", "neither", "left", "right"}
Include boundaries. Whether to set each bound as closed or open.
Returns Type DescriptionSeries
Series representing whether each element is between left and right (inclusive). clip
Trim values at input threshold(s).
Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.
Parameters Name Descriptionlower
float or array-like, default None
Minimum threshold value. All values below this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
upper
float or array-like, default None
Maximum threshold value. All values above this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.
copycopy() -> bigframes.series.Series
Make a copy of this object's indices and data.
A new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object.
countReturn number of non-NA/null observations in the Series.
Returns Type Descriptionint or Series (if level specified)
Number of non-null values in the Series. cummax
cummax() -> bigframes.series.Series
Return cumulative maximum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative maximum.
Parameter Name Descriptionaxis
{{0 or 'index', 1 or 'columns'}}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'. For Series
this parameter is unused and defaults to 0.
bigframes.series.Series
Return cumulative maximum of scalar or Series. cummin
cummin() -> bigframes.series.Series
Return cumulative minimum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative minimum.
Parameters Name Descriptionaxis
{0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'. For Series
this parameter is unused and defaults to 0.
skipna
bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Returns Type Descriptionbigframes.series.Series
Return cumulative minimum of scalar or Series. cumprod
cumprod() -> bigframes.series.Series
Return cumulative product over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative product.
Returns Type Descriptionbigframes.series.Series
Return cumulative sum of scalar or Series. cumsum
cumsum() -> bigframes.series.Series
Return cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative sum.
Parameter Name Descriptionaxis
{0 or 'index', 1 or 'columns'}, default 0
The index or the name of the axis. 0 is equivalent to None or 'index'. For Series
this parameter is unused and defaults to 0.
scalar or Series
Return cumulative sum of scalar or Series. diff
diff(periods: int = 1) -> bigframes.series.Series
First discrete difference of element.
Calculates the difference of a {klass} element compared with another element in the {klass} (default is element in previous row).
Parameter Name Descriptionperiods
int, default 1
Periods to shift for calculating difference, accepts negative values.
Returns Type Description{klass}
First differences of the Series. div
div(other: float | int | Series) -> Series
Return floating division of Series and other, element-wise (binary operator truediv).
Equivalent to series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. divide
divide(other: float | int | Series) -> Series
Return floating division of Series and other, element-wise (binary operator truediv).
Equivalent to series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. divmod
divmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]
Return integer division and modulo of Series and other, element-wise (binary operator divmod).
Equivalent to divmod(series, other).
dotCompute the dot product between the Series and the columns of other.
This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array.
It can also be called using self @ other
in Python >= 3.5.
other
Series
The other object to compute the dot product with its columns.
Returns Type Descriptionscalar, Series or numpy.ndarray
Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. drop
drop(
labels: typing.Optional[typing.Any] = None,
*,
axis: typing.Union[int, str] = 0,
index: typing.Optional[typing.Any] = None,
columns: typing.Optional[
typing.Union[typing.Hashable, typing.Iterable[typing.Hashable]]
] = None,
level: typing.Optional[typing.Union[str, int]] = None
) -> bigframes.series.Series
Return Series with specified index labels removed.
Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.
Parameter Name Descriptionlabels
single label or list-like
Index labels to drop.
Exceptions Type DescriptionKeyError
If none of the labels are found in the index. Returns Type Description bigframes.series.Series
Series with specified index labels removed or None if inplace=True
. drop_duplicates
drop_duplicates(*, keep: str = "first") -> bigframes.series.Series
Return Series with duplicate values removed.
Parameter Name Descriptionkeep
{'first', 'last', False
}, default 'first'
Method to handle dropping duplicates: 'first' : Drop duplicates except for the first occurrence. 'last' : Drop duplicates except for the last occurrence. False
: Drop all duplicates.
bigframes.series.Series
Series with duplicates dropped or None if inplace=True
. droplevel
droplevel(level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]])
Return Series with requested index / column level(s) removed.
Parameter Name Descriptionlevel
int, str, or list-like
If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels.
duplicatedduplicated(keep: str = "first") -> bigframes.series.Series
Indicate duplicate Series values.
Duplicated values are indicated as True
values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated.
keep
{'first', 'last', False}, default 'first'
Method to handle dropping duplicates: 'first' : Mark duplicates as True
except for the first occurrence. 'last' : Mark duplicates as True
except for the last occurrence. False
: Mark all duplicates as True
.
bigframes.series.Series
Series indicating whether each value has occurred in the preceding values. eq
eq(other: object) -> bigframes.series.Series
Return equal of Series and other, element-wise (binary operator eq).
Equivalent to other == series
, but with support to substitute a fill_value for missing data in either one of the inputs.
Series
The result of the operation. expanding
expanding(min_periods: int = 1) -> bigframes.core.window.Window
Provide expanding window calculations.
Parameter Name Descriptionmin_periods
int, default 1
Minimum number of observations in window required to have a value; otherwise, result is np.nan
.
fillna(value=None) -> "Series" | None
Fill NA/NaN values using the specified method.
Parameter Name Descriptionvalue
scalar, dict, Series, or DataFrame, default None
Value to use to fill holes (e.g. 0).
Returns Type DescriptionSeries or None
Object with missing values filled or None. floordiv
floordiv(other: float | int | Series) -> Series
Return integer division of Series and other, element-wise (binary operator floordiv).
Equivalent to series // other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. ge
ge(other) -> bigframes.series.Series
Get 'greater than or equal to' of Series and other, element-wise (binary operator >=
).
Equivalent to series >= other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. get
Get item from object for given key (ex: DataFrame column).
Returns default value if not found.
groupbygroupby(
by: typing.Union[
blocks.Label, Series, typing.Sequence[typing.Union[blocks.Label, Series]]
] = None,
axis=0,
level: typing.Optional[
int | str | typing.Sequence[int] | typing.Sequence[str]
] = None,
as_index: bool = True,
*,
dropna: bool = True
) -> bigframes.core.groupby.SeriesGroupBy
Group Series using a mapper or by a Series of columns.
A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.
Parameters Name Descriptionby
mapping, function, label, pd.Grouper or list of such, default None
Used to determine the groups for the groupby. If by
is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see .align()
method). If a list or ndarray of length equal to the selected axis is passed (see the groupby user guide https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#splitting-an-object-into-groups
_), the values are used as-is to determine the groups. A label or list of labels may be passed to group by the columns in self
. Notice that a tuple is interpreted as a (single) key.
axis
{0 or 'index', 1 or 'columns'}, default 0
Split along rows (0) or columns (1). For Series
this parameter is unused and defaults to 0.
level
int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both by
and level
.
as_index
bool, default True
Return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. This argument has no effect on filtrations (see the "filtrations in the user guide" https://pandas.pydata.org/docs/dev/user_guide/groupby.html#filtration
), such as head()
, tail()
, nth()
and in transformations (see the "transformations in the user guide" https://pandas.pydata.org/docs/dev/user_guide/groupby.html#transformation
).
gt(other) -> bigframes.series.Series
Get 'less than or equal to' of Series and other, element-wise (binary operator <=
).
Equivalent to series <= other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. head
head(n: int = 5) -> bigframes.series.Series
Return the first n
rows.
This function returns the first n
rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it.
Not yet supported For negative values of n
, this function returns all rows except the last |n|
rows, equivalent to df[:n]
.
If n is larger than the number of rows, this function returns all rows.
Parameter Name Descriptionn
int, default 5
Default 5. Number of rows to select.
isinisin(values) -> "Series" | None
Whether elements in Series are contained in values.
Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of values exactly.
Note: This function treats all NaN-like values(e.g., pd.NA, numpy.nan, None) as the same. That is, if any form of NaN is present in values, all forms of NaN in the series will be considered a match. (though pandas may not) Parameter Name Descriptionvalues
list-like
The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.
Exceptions Type DescriptionTypeError
If input is not list-like. Returns Type Description bigframes.series.Series
Series of booleans indicating if each element is in values. isna
isna() -> bigframes.series.Series
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values get mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ''
or numpy.inf
are not considered NA values.
isnull() -> bigframes.series.Series
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values get mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ''
or numpy.inf
are not considered NA values.
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Returns Type Descriptionscalar or scalar
Unbiased kurtosis over requested axis. kurtosis
Return unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Returns Type Descriptionscalar or scalar
Unbiased kurtosis over requested axis. le
le(other) -> bigframes.series.Series
Get 'less than or equal to' of Series and other, element-wise (binary operator <=
).
Equivalent to series <= other
, but with support to substitute a fill_value for missing data in either one of the inputs.
lt(other) -> bigframes.series.Series
Get 'less than' of Series and other, element-wise (binary operator <
).
Equivalent to series < other
, but with support to substitute a fill_value for missing data in either one of the inputs.
mask(cond, other=None) -> bigframes.series.Series
Replace values where the condition is True.
Parameters Name Descriptioncond
bool Series/DataFrame, array-like, or callable
Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
other
scalar, Series/DataFrame, or callable
Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).
Returns Type Descriptionbigframes.series.Series
Series after the replacement. max
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use idxmax
. This is the equivalent of the numpy.ndarray
method argmax
.
Return the mean of the values over the requested axis.
medianmedian(*, exact: bool = False) -> float
Return the median of the values over the requested axis.
Parameter Name Descriptionexact
bool. default False
Default False. Get the exact median instead of an approximate one. Note: exact=True
not yet supported.
Return the maximum of the values over the requested axis.
If you want the index of the minimum, use idxmin
. This is the equivalent of the numpy.ndarray
method argmin
.
mod(other) -> bigframes.series.Series
Return modulo of Series and other, element-wise (binary operator mod).
Equivalent to series % other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. mode
mode() -> bigframes.series.Series
Return the mode(s) of the Series.
The mode is the value that appears most often. There can be multiple modes.
Always returns Series even if only one value is returned.
Returns Type Descriptionbigframes.series.Series
Modes of the Series in sorted order. mul
mul(other: float | int | Series) -> Series
Return multiplication of Series and other, element-wise (binary operator mul).
Equivalent to other * series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. multiply
multiply(other: float | int | Series) -> Series
Return multiplication of Series and other, element-wise (binary operator mul).
Equivalent to other * series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. ne
ne(other: object) -> bigframes.series.Series
Return not equal of Series and other, element-wise (binary operator ne).
Equivalent to other != series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. nlargest
nlargest(n: int = 5, keep: str = "first") -> bigframes.series.Series
Return the largest n
elements.
n
int, default 5
Return this many descending sorted values.
keep
{'first', 'last', 'all'}, default 'first'
When there are duplicate values that cannot all fit in a Series of n
elements: first
: return the first n
occurrences in order of appearance. last
: return the last n
occurrences in reverse order of appearance. all
: keep all occurrences. This can result in a Series of size larger than n
.
bigframes.series.Series
The n
largest values in the Series, sorted in decreasing order. notna
notna() -> bigframes.series.Series
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ''
or numpy.inf
are not considered NA values. NA values get mapped to False values.
NDFrame
Mask of bool values for each element that indicates whether an element is not an NA value. notnull
notnull() -> bigframes.series.Series
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ''
or numpy.inf
are not considered NA values. NA values get mapped to False values.
NDFrame
Mask of bool values for each element that indicates whether an element is not an NA value. nsmallest
nsmallest(n: int = 5, keep: str = "first") -> bigframes.series.Series
Return the smallest n
elements.
n
int, default 5
Return this many ascending sorted values.
keep
{'first', 'last', 'all'}, default 'first'
When there are duplicate values that cannot all fit in a Series of n
elements: first
: return the first n
occurrences in order of appearance. last
: return the last n
occurrences in reverse order of appearance. all
: keep all occurrences. This can result in a Series of size larger than n
.
bigframes.series.Series
The n
smallest values in the Series, sorted in increasing order. nunique
Return number of unique elements in the object.
Excludes NA values by default.
Returns Type Descriptionint
number of unique elements in the object. prod
Return the product of the values over the requested axis.
productReturn the product of the values over the requested axis.
raddradd(other: float | int | Series) -> Series
Return addition of Series and other, element-wise (binary operator radd).
Equivalent to other + series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. rank
rank(
axis=0,
method: str = "average",
numeric_only=False,
na_option: str = "keep",
ascending: bool = True,
) -> bigframes.series.Series
Compute numerical data ranks (1 through n) along axis.
By default, equal values are assigned a rank that is the average of the ranks of those values.
Parameters Name Descriptionmethod
{'average', 'min', 'max', 'first', 'dense'}, default 'average'
How to rank the group of records that have the same value (i.e. ties): average
: average rank of the group, min
: lowest rank in the group max: highest rank in the group,
first: ranks assigned in order they appear in the array,
dense`: like 'min', but rank always increases by 1 between groups.
numeric_only
bool, default False
For DataFrame objects, rank only numeric columns if set to True.
na_option
{'keep', 'top', 'bottom'}, default 'keep'
How to rank NaN values: keep
: assign NaN rank to NaN values, , top
: assign lowest rank to NaN values, bottom
: assign highest rank to NaN values.
ascending
bool, default True
Whether or not the elements should be ranked in ascending order.
Returns Type Descriptionsame type as caller
Return a Series or DataFrame with data ranks as values. rdiv
rdiv(other: float | int | Series) -> Series
Return floating division of Series and other, element-wise (binary operator rtruediv).
Equivalent to other / series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. rdivmod
rdivmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]
Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).
Equivalent to other divmod series.
renamerename(
index: typing.Optional[
typing.Union[typing.Hashable, typing.Mapping[typing.Any, typing.Any]]
] = None,
**kwargs
) -> bigframes.series.Series
Alter Series index labels or name.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error.
Alternatively, change Series.name
with a scalar value.
index
scalar, hashable sequence, dict-like or function optional
Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the Series.name
attribute.
bigframes.series.Series
Series with index labels. rename_axis
rename_axis(
mapper: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], **kwargs
) -> bigframes.series.Series
Set the name of the axis for the index or columns.
Parameter Name Descriptionmapper
scalar, list-like, optional
Value to set the axis name attribute.
Returns Type Descriptionbigframes.series.Series
Series with the name of the axis set. reorder_levels
reorder_levels(
order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]]
)
Rearrange index levels using input order.
May not drop or duplicate levels.
Parameter Name Descriptionorder
list of int representing new level order
Reference level by number or key.
reset_indexreset_index(
*, name: typing.Optional[str] = None, drop: bool = False
) -> bigframes.dataframe.DataFrame | Series
Generate a new DataFrame or Series with the index reset.
This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation.
Parameters Name Descriptiondrop
bool, default False
Just reset the index, without inserting it as a column in the new DataFrame.
name
object, optional
The name to use for the column containing the original Series values. Uses self.name
by default. This argument is ignored when drop
is True.
rfloordiv(other: float | int | Series) -> Series
Return integer division of Series and other, element-wise (binary operator rfloordiv).
Equivalent to other // series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. rmod
rmod(other) -> bigframes.series.Series
Get modulo of Series and other, element-wise (binary operator rmod
).
Equivalent to other % series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. rmul
rmul(other: float | int | Series) -> Series
Return multiplication of Series and other, element-wise (binary operator mul).
Equivalent to series * others
, but with support to substitute a fill_value for missing data in either one of the inputs.
Series
The result of the operation. rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.Window
Provide rolling window calculations.
Parameters Name Descriptionwindow
int, timedelta, str, offset, or BaseIndexer subclass
Size of the moving window. If an integer, the fixed number of observations used for each window. If a timedelta, str, or offset, the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetime-like indexes. To learn more about the offsets & frequency strings, please see this link https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
__. If a BaseIndexer subclass, the window boundaries based on the defined get_window_bounds
method. Additional rolling keyword arguments, namely min_periods
, center
, closed
and step
will be passed to get_window_bounds
.
min_periods
int, default None
Minimum number of observations in window required to have a value; otherwise, result is np.nan
. For a window that is specified by an offset, min_periods
will default to 1. For a window that is specified by an integer, min_periods
will default to the size of the window.
round(decimals=0) -> bigframes.series.Series
Round each value in a Series to the given number of decimals.
Parameter Name Descriptiondecimals
int, default 0
Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point.
Returns Type Descriptionbigframes.series.Series
Rounded values of the Series. rsub
rsub(other: float | int | Series) -> Series
Return subtraction of Series and other, element-wise (binary operator rsub).
Equivalent to other - series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. rtruediv
rtruediv(other: float | int | Series) -> Series
Return floating division of Series and other, element-wise (binary operator rtruediv).
Equivalent to other / series
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. sample
sample(
n: typing.Optional[int] = None,
frac: typing.Optional[float] = None,
*,
random_state: typing.Optional[int] = None
)
Return a random sample of items from an axis of object.
You can use random_state
for reproducibility.
n
Optional[int], default None
Number of items from axis to return. Cannot be used with frac
. Default = 1 if frac
= None.
frac
Optional[float], default None
Fraction of axis items to return. Cannot be used with n
.
random_state
Optional[int], default None
Seed for random number generator.
shiftshift(periods: int = 1) -> bigframes.series.Series
Shift index by desired number of periods.
Shifts the index without realigning the data.
Returns Type DescriptionNDFrame
Copy of input object, shifted. skew
Return unbiased skew over requested axis.
Normalized by N-1.
sort_indexsort_index(
*, axis=0, ascending=True, na_position="last"
) -> bigframes.series.Series
Sort Series by index labels.
Returns a new Series sorted by label if inplace
argument is False
, otherwise updates the original series and returns None.
axis
{0 or 'index'}
Unused. Parameter needed for compatibility with DataFrame.
ascending
bool or list-like of bools, default True
Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.
na_position
{'first', 'last'}, default 'last'
If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex.
Returns Type Descriptionbigframes.series.Series
The original Series sorted by the labels or None if inplace=True
. sort_values
sort_values(
*, axis=0, ascending=True, kind: str = "quicksort", na_position="last"
) -> bigframes.series.Series
Sort by the values.
Sort a Series in ascending or descending order by some criterion.
Parameters Name Descriptionaxis
0 or 'index'
Unused. Parameter needed for compatibility with DataFrame.
ascending
bool or list of bools, default True
If True, sort values in ascending order, otherwise descending.
kind
str, default to 'quicksort'
Choice of sorting algorithm. Accepts 'quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’. Ignored except when determining whether to sort stably. 'mergesort' or 'stable' will result in stable reorder
na_position
{'first' or 'last'}, default 'last'
Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end.
Returns Type Descriptionbigframes.series.Series
Series ordered by values or None if inplace=True
. std
Return sample standard deviation over requested axis.
Normalized by N-1 by default.
subsub(other: float | int | Series) -> Series
Return subtraction of Series and other, element-wise (binary operator sub).
Equivalent to series - other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. subtract
subtract(other: float | int | Series) -> Series
Return subtraction of Series and other, element-wise (binary operator sub).
Equivalent to series - other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. sum
Return the sum of the values over the requested axis.
This is equivalent to the method numpy.sum
.
tail(n: int = 5) -> bigframes.series.Series
Return the last n
rows.
This function returns last n
rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows.
For negative values of n
, this function returns all rows except the first |n|
rows, equivalent to df[|n|:]
.
If n is larger than the number of rows, this function returns all rows.
Parameter Name Descriptionn
int, default 5
Number of rows to select.
to_csvto_csv(path_or_buf=None, **kwargs) -> typing.Optional[str]
Write object to a comma-separated values (csv) file.
Parameter Name Descriptionpath_or_buf
str, path object, file-like object, or None, default None
String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with newline=''
, disabling universal newlines. If a binary file object is passed, mode
might need to contain a 'b'
.
None or str
If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. to_dict
to_dict(into: type[dict] = <class 'dict'>) -> typing.Mapping
Convert Series to {label -> value} dict or dict-like object.
Parameter Name Descriptioninto
class, default dict
The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.
Returns Type Descriptioncollections.abc.Mapping
Key-value representation of Series. to_excel
to_excel(excel_writer, sheet_name="Sheet1", **kwargs) -> None
Write Series to an Excel sheet.
To write a single Series to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter
object with a target file name, and specify a sheet in the file to write to.
Multiple sheets may be written to by specifying unique sheet_name
. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter
object with a file name that already exists will result in the contents of the existing file being erased.
excel_writer
path-like, file-like, or ExcelWriter object
File path or existing ExcelWriter.
sheet_name
str, default 'Sheet1'
Name of sheet to contain Series.
to_frameto_frame() -> bigframes.dataframe.DataFrame
Convert Series to DataFrame.
to_jsonto_json(
path_or_buf=None,
orient: typing.Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
**kwargs
) -> typing.Optional[str]
Convert the object to a JSON string.
Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.
Parameters Name Descriptionpath_or_buf
str, path object, file-like object, or None, default None
String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string.
orient
{"split", "records", "index", "columns", "values", "table"}, default "columns"
Indication of expected JSON string format. 'split' : dict like {{'index' -> [index], 'columns' -> [columns],'data' -> [values]}} 'records' : list like [{{column -> value}}, ... , {{column -> value}}] 'index' : dict like {{index -> {{column -> value}}}} 'columns' : dict like {{column -> {{index -> value}}}} 'values' : just the values array 'table' : dict like {{'schema': {{schema}}, 'data': {{data}}}} Describing the data, where data component is like orient='records'
.
None or str
If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None. to_latex
to_latex(
buf=None, columns=None, header=True, index=True, **kwargs
) -> typing.Optional[str]
Render object to a LaTeX tabular, longtable, or nested table.
Parameters Name Descriptionbuf
str, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
columns
list of label, optional
The subset of columns to write. Writes all columns by default.
header
bool or list of str, default True
Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.
index
bool, default True
Write row names (index).
Returns Type Descriptionstr or None
If buf is None, returns the result as a string. Otherwise returns None. to_list
Return a list of the values.
These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period).
Returns Type Descriptionlist
list of the values to_markdown
to_markdown(
buf: typing.IO[str] | None = None, mode: str = "wt", index: bool = True, **kwargs
) -> typing.Optional[str]
Print {klass} in Markdown-friendly format.
Parameters Name Descriptionbuf
str, Path or StringIO-like, optional, default None
Buffer to write to. If None, the output is returned as a string.
mode
str, optional
Mode in which file is opened, "wt" by default.
index
bool, optional, default True
Add index (row) labels.
Returns Type Descriptionstr
{klass} in Markdown-friendly format. to_numpy
to_numpy(dtype=None, copy=False, na_value=None, **kwargs) -> numpy.ndarray
A NumPy ndarray representing the values in this Series or Index.
Parameters Name Descriptiondtype
str or numpy.dtype, optional
The dtype to pass to numpy.asarray
.
copy
bool, default False
Whether to ensure that the returned value is not a view on another array. Note that copy=False
does not ensure that to_numpy()
is no-copy. Rather, copy=True
ensure that a copy is made, even if not strictly necessary.
na_value
Any, optional
The value to use for missing values. The default value depends on dtype
and the type of the array.
numpy.ndarray
A NumPy ndarray representing the values in this Series or Index. to_pandas
to_pandas(
max_download_size: typing.Optional[int] = None,
sampling_method: typing.Optional[str] = None,
random_state: typing.Optional[int] = None,
) -> pandas.core.series.Series
Writes Series to pandas Series.
Parameters Name Descriptionmax_download_size
int, default None
Download size threshold in MB. If max_download_size is exceeded when downloading data (e.g., to_pandas()), the data will be downsampled if bigframes.options.sampling.enable_downsampling is True, otherwise, an error will be raised. If set to a value other than None, this will supersede the global config.
sampling_method
str, default None
Downsampling algorithms to be chosen from, the choices are: "head": This algorithm returns a portion of the data from the beginning. It is fast and requires minimal computations to perform the downsampling; "uniform": This algorithm returns uniform random samples of the data. If set to a value other than None, this will supersede the global config.
random_state
int, default None
The seed for the uniform downsampling algorithm. If provided, the uniform method may take longer to execute and require more computation. If set to a value other than None, this will supersede the global config.
Returns Type Descriptionpandas.Series
A pandas Series with all rows of this Series if the data_sampling_threshold_mb is not exceeded; otherwise, a pandas Series with downsampled rows of the DataFrame. to_pickle
to_pickle(path, **kwargs) -> None
Pickle (serialize) object to file.
Parameter Name Descriptionpath
str, path object, or file-like object
String, path object (implementing os.PathLike[str]
), or file-like object implementing a binary write()
function. File path where the pickled object will be stored.
to_string(
buf=None,
na_rep="NaN",
float_format=None,
header=True,
index=True,
length=False,
dtype=False,
name=False,
max_rows=None,
min_rows=None,
) -> typing.Optional[str]
Render a string representation of the Series.
Parameters Name Descriptionbuf
StringIO-like, optional
Buffer to write to.
na_rep
str, optional
String representation of NaN to use, default 'NaN'.
float_format
one-parameter function, optional
Formatter function to apply to columns' elements if they are floats, default None.
header
bool, default True
Add the Series header (index name).
index
bool, optional
Add index (row) labels, default True.
length
bool, default False
Add the Series length.
dtype
bool, default False
Add the Series dtype.
name
bool, default False
Add the Series name if not None.
max_rows
int, optional
Maximum number of rows to show before truncating. If None, show all.
min_rows
int, optional
The number of rows to display in a truncated repr (when number of rows is above max_rows
).
str or None
String representation of Series if buf=None
, otherwise None. to_xarray
Return an xarray object from the pandas object.
Returns Type Descriptionxarray.DataArray or xarray.Dataset
Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. tolist
Return a list of the values.
These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period).
Returns Type Descriptionlist
list of the values truediv
truediv(other: float | int | Series) -> Series
Return floating division of Series and other, element-wise (binary operator truediv).
Equivalent to series / other
, but with support to substitute a fill_value for missing data in either one of the inputs.
bigframes.series.Series
The result of the operation. unique
unique() -> bigframes.series.Series
API documentation for unique
method.
value_counts(
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
*,
dropna: bool = True
)
Return a Series containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.
Parameters Name Descriptionnormalize
bool, default False
If True then the object returned will contain the relative frequencies of the unique values.
sort
bool, default True
Sort by frequencies.
ascending
bool, default False
Sort in ascending order.
dropna
bool, default True
Don't include counts of NaN.
Returns Type DescriptionSeries
Series containing counts of unique values. var
Return unbiased variance over requested axis.
Normalized by N-1 by default.
whereReplace values where the condition is False.
Parameters Name Descriptioncond
bool Series/DataFrame, array-like, or callable
Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and returns boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).
other
scalar, Series/DataFrame, or callable
Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and returns scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).
Returns Type Descriptionbigframes.series.Series
Series after the replacement.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-12 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-12 UTC."],[],[]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4