Stay organized with collections Save and categorize content based on your preferences.
GoogleSQL for BigQuery supports the following functions, which can retrieve and transform JSON data.
CategoriesThe JSON functions are grouped into the following categories based on their behavior:
Function list Name SummaryBOOL
Converts a JSON boolean to a SQL BOOL
value. FLOAT64
Converts a JSON number to a SQL FLOAT64
value. INT64
Converts a JSON number to a SQL INT64
value. JSON_ARRAY
Creates a JSON array. JSON_ARRAY_APPEND
Appends JSON data to the end of a JSON array. JSON_ARRAY_INSERT
Inserts JSON data into a JSON array. JSON_EXTRACT
(Deprecated) Extracts a JSON value and converts it to a SQL JSON-formatted STRING
or JSON
value. JSON_EXTRACT_ARRAY
(Deprecated) Extracts a JSON array and converts it to a SQL ARRAY<JSON-formatted STRING>
or ARRAY<JSON>
value. JSON_EXTRACT_SCALAR
(Deprecated) Extracts a JSON scalar value and converts it to a SQL STRING
value. JSON_EXTRACT_STRING_ARRAY
(Deprecated) Extracts a JSON array of scalar values and converts it to a SQL ARRAY<STRING>
value. JSON_KEYS
Extracts unique JSON keys from a JSON expression. JSON_OBJECT
Creates a JSON object. JSON_QUERY
Extracts a JSON value and converts it to a SQL JSON-formatted STRING
or JSON
value. JSON_QUERY_ARRAY
Extracts a JSON array and converts it to a SQL ARRAY<JSON-formatted STRING>
or ARRAY<JSON>
value. JSON_REMOVE
Produces JSON with the specified JSON data removed. JSON_SET
Inserts or replaces JSON data. JSON_STRIP_NULLS
Removes JSON nulls from JSON objects and JSON arrays. JSON_TYPE
Gets the JSON type of the outermost JSON value and converts the name of this type to a SQL STRING
value. JSON_VALUE
Extracts a JSON scalar value and converts it to a SQL STRING
value. JSON_VALUE_ARRAY
Extracts a JSON array of scalar values and converts it to a SQL ARRAY<STRING>
value. LAX_BOOL
Attempts to convert a JSON value to a SQL BOOL
value. LAX_FLOAT64
Attempts to convert a JSON value to a SQL FLOAT64
value. LAX_INT64
Attempts to convert a JSON value to a SQL INT64
value. LAX_STRING
Attempts to convert a JSON value to a SQL STRING
value. PARSE_JSON
Converts a JSON-formatted STRING
value to a JSON
value. STRING
(JSON) Converts a JSON string to a SQL STRING
value. TO_JSON
Converts a SQL value to a JSON value. TO_JSON_STRING
Converts a SQL value to a JSON-formatted STRING
value. BOOL
BOOL(json_expr)
Description
Converts a JSON boolean to a SQL BOOL
value.
Arguments:
json_expr
: JSON. For example:
JSON 'true'
If the JSON value isn't a boolean, an error is produced. If the expression is SQL NULL
, the function returns SQL NULL
.
Return type
BOOL
Examples
SELECT BOOL(JSON 'true') AS vacancy;
/*---------*
| vacancy |
+---------+
| true |
*---------*/
SELECT BOOL(JSON_QUERY(JSON '{"hotel class": "5-star", "vacancy": true}', "$.vacancy")) AS vacancy;
/*---------*
| vacancy |
+---------+
| true |
*---------*/
The following examples show how invalid requests are handled:
-- An error is thrown if JSON isn't of type bool.
SELECT BOOL(JSON '123') AS result; -- Throws an error
SELECT BOOL(JSON 'null') AS result; -- Throws an error
SELECT SAFE.BOOL(JSON '123') AS result; -- Returns a SQL NULL
FLOAT64
FLOAT64(
json_expr
[, wide_number_mode => { 'exact' | 'round' } ]
)
Description
Converts a JSON number to a SQL FLOAT64
value.
Arguments:
json_expr
: JSON. For example:
JSON '9.8'
If the JSON value isn't a number, an error is produced. If the expression is a SQL NULL
, the function returns SQL NULL
.
wide_number_mode
: A named argument with a STRING
value. Defines what happens with a number that can't be represented as a FLOAT64
without loss of precision. This argument accepts one of the two case-sensitive values:
exact
: The function fails if the result can't be represented as a FLOAT64
without loss of precision.round
(default): The numeric value stored in JSON will be rounded to FLOAT64
. If such rounding isn't possible, the function fails.Return type
FLOAT64
Examples
SELECT FLOAT64(JSON '9.8') AS velocity;
/*----------*
| velocity |
+----------+
| 9.8 |
*----------*/
SELECT FLOAT64(JSON_QUERY(JSON '{"vo2_max": 39.1, "age": 18}', "$.vo2_max")) AS vo2_max;
/*---------*
| vo2_max |
+---------+
| 39.1 |
*---------*/
SELECT FLOAT64(JSON '18446744073709551615', wide_number_mode=>'round') as result;
/*------------------------*
| result |
+------------------------+
| 1.8446744073709552e+19 |
*------------------------*/
SELECT FLOAT64(JSON '18446744073709551615') as result;
/*------------------------*
| result |
+------------------------+
| 1.8446744073709552e+19 |
*------------------------*/
The following examples show how invalid requests are handled:
-- An error is thrown if JSON isn't of type FLOAT64.
SELECT FLOAT64(JSON '"strawberry"') AS result;
SELECT FLOAT64(JSON 'null') AS result;
-- An error is thrown because `wide_number_mode` is case-sensitive and not "exact" or "round".
SELECT FLOAT64(JSON '123.4', wide_number_mode=>'EXACT') as result;
SELECT FLOAT64(JSON '123.4', wide_number_mode=>'exac') as result;
-- An error is thrown because the number can't be converted to DOUBLE without loss of precision
SELECT FLOAT64(JSON '18446744073709551615', wide_number_mode=>'exact') as result;
-- Returns a SQL NULL
SELECT SAFE.FLOAT64(JSON '"strawberry"') AS result;
INT64
INT64(json_expr)
Description
Converts a JSON number to a SQL INT64
value.
Arguments:
json_expr
: JSON. For example:
JSON '999'
If the JSON value isn't a number, or the JSON number isn't in the SQL INT64
domain, an error is produced. If the expression is SQL NULL
, the function returns SQL NULL
.
Return type
INT64
Examples
SELECT INT64(JSON '2005') AS flight_number;
/*---------------*
| flight_number |
+---------------+
| 2005 |
*---------------*/
SELECT INT64(JSON_QUERY(JSON '{"gate": "A4", "flight_number": 2005}', "$.flight_number")) AS flight_number;
/*---------------*
| flight_number |
+---------------+
| 2005 |
*---------------*/
SELECT INT64(JSON '10.0') AS score;
/*-------*
| score |
+-------+
| 10 |
*-------*/
The following examples show how invalid requests are handled:
-- An error is thrown if JSON isn't a number or can't be converted to a 64-bit integer.
SELECT INT64(JSON '10.1') AS result; -- Throws an error
SELECT INT64(JSON '"strawberry"') AS result; -- Throws an error
SELECT INT64(JSON 'null') AS result; -- Throws an error
SELECT SAFE.INT64(JSON '"strawberry"') AS result; -- Returns a SQL NULL
JSON_ARRAY
JSON_ARRAY([value][, ...])
Description
Creates a JSON array from zero or more SQL values.
Arguments:
value
: A JSON encoding-supported value to add to a JSON array.Return type
JSON
Examples
The following query creates a JSON array with one value in it:
SELECT JSON_ARRAY(10) AS json_data
/*-----------*
| json_data |
+-----------+
| [10] |
*-----------*/
You can create a JSON array with an empty JSON array in it. For example:
SELECT JSON_ARRAY([]) AS json_data
/*-----------*
| json_data |
+-----------+
| [[]] |
*-----------*/
SELECT JSON_ARRAY(10, 'foo', NULL) AS json_data
/*-----------------*
| json_data |
+-----------------+
| [10,"foo",null] |
*-----------------*/
SELECT JSON_ARRAY(STRUCT(10 AS a, 'foo' AS b)) AS json_data
/*----------------------*
| json_data |
+----------------------+
| [{"a":10,"b":"foo"}] |
*----------------------*/
SELECT JSON_ARRAY(10, ['foo', 'bar'], [20, 30]) AS json_data
/*----------------------------*
| json_data |
+----------------------------+
| [10,["foo","bar"],[20,30]] |
*----------------------------*/
SELECT JSON_ARRAY(10, [JSON '20', JSON '"foo"']) AS json_data
/*-----------------*
| json_data |
+-----------------+
| [10,[20,"foo"]] |
*-----------------*/
You can create an empty JSON array. For example:
SELECT JSON_ARRAY() AS json_data
/*-----------*
| json_data |
+-----------+
| [] |
*-----------*/
JSON_ARRAY_APPEND
JSON_ARRAY_APPEND(
json_expr,
json_path_value_pair[, ...]
[, append_each_element => { TRUE | FALSE } ]
)
json_path_value_pair:
json_path, value
Appends JSON data to the end of a JSON array.
Arguments:
json_expr
: JSON. For example:
JSON '["a", "b", "c"]'
json_path_value_pair
: A value and the JSONPath for that value. This includes:
json_path
: Append value
at this JSONPath in json_expr
.
value
: A JSON encoding-supported value to append.
append_each_element
: A named argument with a BOOL
value.
If TRUE
(default), and value
is a SQL array, appends each element individually.
If FALSE,
and value
is a SQL array, appends the array as one element.
Details:
json_path
points to a JSON null, the JSON null is replaced by a JSON array that contains value
.json_path
is an invalid JSONPath, an error is produced.json_expr
is SQL NULL
, the function returns SQL NULL
.append_each_element
is SQL NULL
, the function returns json_expr
.json_path
is SQL NULL
, the json_path_value_pair
operation is ignored.Return type
JSON
Examples
In the following example, path $
is matched and appends 1
.
SELECT JSON_ARRAY_APPEND(JSON '["a", "b", "c"]', '$', 1) AS json_data
/*-----------------*
| json_data |
+-----------------+
| ["a","b","c",1] |
*-----------------*/
In the following example, append_each_element
defaults to TRUE
, so [1, 2]
is appended as individual elements.
SELECT JSON_ARRAY_APPEND(JSON '["a", "b", "c"]', '$', [1, 2]) AS json_data
/*-------------------*
| json_data |
+-------------------+
| ["a","b","c",1,2] |
*-------------------*/
In the following example, append_each_element
is FALSE
, so [1, 2]
is appended as one element.
SELECT JSON_ARRAY_APPEND(
JSON '["a", "b", "c"]',
'$', [1, 2],
append_each_element=>FALSE) AS json_data
/*---------------------*
| json_data |
+---------------------+
| ["a","b","c",[1,2]] |
*---------------------*/
In the following example, append_each_element
is FALSE
, so [1, 2]
and [3, 4]
are each appended as one element.
SELECT JSON_ARRAY_APPEND(
JSON '["a", ["b"], "c"]',
'$[1]', [1, 2],
'$[1][1]', [3, 4],
append_each_element=>FALSE) AS json_data
/*-----------------------------*
| json_data |
+-----------------------------+
| ["a",["b",[1,2,[3,4]]],"c"] |
*-----------------------------*/
In the following example, the first path $[1]
appends [1, 2]
as single elements, and then the second path $[1][1]
isn't a valid path to an array, so the second operation is ignored.
SELECT JSON_ARRAY_APPEND(
JSON '["a", ["b"], "c"]',
'$[1]', [1, 2],
'$[1][1]', [3, 4]) AS json_data
/*---------------------*
| json_data |
+---------------------+
| ["a",["b",1,2],"c"] |
*---------------------*/
In the following example, path $.a
is matched and appends 2
.
SELECT JSON_ARRAY_APPEND(JSON '{"a": [1]}', '$.a', 2) AS json_data
/*-------------*
| json_data |
+-------------+
| {"a":[1,2]} |
*-------------*/
In the following example, a value is appended into a JSON null.
SELECT JSON_ARRAY_APPEND(JSON '{"a": null}', '$.a', 10)
/*------------*
| json_data |
+------------+
| {"a":[10]} |
*------------*/
In the following example, path $.a
isn't an array, so the operation is ignored.
SELECT JSON_ARRAY_APPEND(JSON '{"a": 1}', '$.a', 2) AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":1} |
*-----------*/
In the following example, path $.b
doesn't exist, so the operation is ignored.
SELECT JSON_ARRAY_APPEND(JSON '{"a": 1}', '$.b', 2) AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":1} |
*-----------*/
JSON_ARRAY_INSERT
JSON_ARRAY_INSERT(
json_expr,
json_path_value_pair[, ...]
[, insert_each_element => { TRUE | FALSE } ]
)
json_path_value_pair:
json_path, value
Produces a new JSON value that's created by inserting JSON data into a JSON array.
Arguments:
json_expr
: JSON. For example:
JSON '["a", "b", "c"]'
json_path_value_pair
: A value and the JSONPath for that value. This includes:
json_path
: Insert value
at this JSONPath in json_expr
.
value
: A JSON encoding-supported value to insert.
insert_each_element
: A named argument with a BOOL
value.
If TRUE
(default), and value
is a SQL array, inserts each element individually.
If FALSE,
and value
is a SQL array, inserts the array as one element.
Details:
json_path
points to a JSON null, the JSON null is replaced by a JSON array of the appropriate size and padded on the left with JSON nulls.json_path
is larger than the size of the array, the function extends the length of the array to the index, fills in the array with JSON nulls, then adds value
at the index.json_path
is an invalid JSONPath, an error is produced.json_expr
is SQL NULL
, the function returns SQL NULL
.insert_each_element
is SQL NULL
, the function returns json_expr
.json_path
is SQL NULL
, the json_path_value_pair
operation is ignored.Return type
JSON
Examples
In the following example, path $[1]
is matched and inserts 1
.
SELECT JSON_ARRAY_INSERT(JSON '["a", ["b", "c"], "d"]', '$[1]', 1) AS json_data
/*-----------------------*
| json_data |
+-----------------------+
| ["a",1,["b","c"],"d"] |
*-----------------------*/
In the following example, path $[1][0]
is matched and inserts 1
.
SELECT JSON_ARRAY_INSERT(JSON '["a", ["b", "c"], "d"]', '$[1][0]', 1) AS json_data
/*-----------------------*
| json_data |
+-----------------------+
| ["a",[1,"b","c"],"d"] |
*-----------------------*/
In the following example, insert_each_element
defaults to TRUE
, so [1, 2]
is inserted as individual elements.
SELECT JSON_ARRAY_INSERT(JSON '["a", "b", "c"]', '$[1]', [1, 2]) AS json_data
/*-------------------*
| json_data |
+-------------------+
| ["a",1,2,"b","c"] |
*-------------------*/
In the following example, insert_each_element
is FALSE
, so [1, 2]
is inserted as one element.
SELECT JSON_ARRAY_INSERT(
JSON '["a", "b", "c"]',
'$[1]', [1, 2],
insert_each_element=>FALSE) AS json_data
/*---------------------*
| json_data |
+---------------------+
| ["a",[1,2],"b","c"] |
*---------------------*/
In the following example, path $[7]
is larger than the length of the matched array, so the array is extended with JSON nulls and "e"
is inserted at the end of the array.
SELECT JSON_ARRAY_INSERT(JSON '["a", "b", "c", "d"]', '$[7]', "e") AS json_data
/*--------------------------------------*
| json_data |
+--------------------------------------+
| ["a","b","c","d",null,null,null,"e"] |
*--------------------------------------*/
In the following example, path $.a
is an object, so the operation is ignored.
SELECT JSON_ARRAY_INSERT(JSON '{"a": {}}', '$.a[0]', 2) AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":{}} |
*-----------*/
In the following example, path $
doesn't specify a valid array position, so the operation is ignored.
SELECT JSON_ARRAY_INSERT(JSON '[1, 2]', '$', 3) AS json_data
/*-----------*
| json_data |
+-----------+
| [1,2] |
*-----------*/
In the following example, a value is inserted into a JSON null.
SELECT JSON_ARRAY_INSERT(JSON '{"a": null}', '$.a[2]', 10) AS json_data
/*----------------------*
| json_data |
+----------------------+
| {"a":[null,null,10]} |
*----------------------*/
In the following example, the operation is ignored because you can't insert data into a JSON number.
SELECT JSON_ARRAY_INSERT(JSON '1', '$[0]', 'r1') AS json_data
/*-----------*
| json_data |
+-----------+
| 1 |
*-----------*/
Note: This function is deprecated. Consider using JSON_QUERY.
JSON_EXTRACT(json_string_expr, json_path)
JSON_EXTRACT(json_expr, json_path)
Description
Extracts a JSON value and converts it to a SQL JSON-formatted STRING
or JSON
value. This function uses single quotes and brackets to escape invalid JSONPath characters in JSON keys. For example: ['a.b']
.
Arguments:
json_string_expr
: A JSON-formatted string. For example:
'{"class": {"students": [{"name": "Jane"}]}}'
Extracts a SQL NULL
when a JSON-formatted string null
is encountered. For example:
SELECT JSON_EXTRACT("null", "$") -- Returns a SQL NULL
json_expr
: JSON. For example:
JSON '{"class": {"students": [{"name": "Jane"}]}}'
Extracts a JSON null
when a JSON null
is encountered.
SELECT JSON_EXTRACT(JSON 'null', "$") -- Returns a JSON 'null'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Return type
json_string_expr
: A JSON-formatted STRING
json_expr
: JSON
Examples
In the following example, JSON data is extracted and returned as JSON.
SELECT
JSON_EXTRACT(JSON '{"class": {"students": [{"id": 5}, {"id": 12}]}}', '$.class')
AS json_data;
/*-----------------------------------*
| json_data |
+-----------------------------------+
| {"students":[{"id":5},{"id":12}]} |
*-----------------------------------*/
In the following examples, JSON data is extracted and returned as JSON-formatted strings.
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "Jane"}]}}',
'$') AS json_text_string;
/*-----------------------------------------------------------*
| json_text_string |
+-----------------------------------------------------------+
| {"class":{"students":[{"name":"Jane"}]}} |
*-----------------------------------------------------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": []}}',
'$') AS json_text_string;
/*-----------------------------------------------------------*
| json_text_string |
+-----------------------------------------------------------+
| {"class":{"students":[]}} |
*-----------------------------------------------------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
'$') AS json_text_string;
/*-----------------------------------------------------------*
| json_text_string |
+-----------------------------------------------------------+
| {"class":{"students":[{"name":"John"},{"name":"Jamie"}]}} |
*-----------------------------------------------------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "Jane"}]}}',
'$.class.students[0]') AS first_student;
/*-----------------*
| first_student |
+-----------------+
| {"name":"Jane"} |
*-----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": []}}',
'$.class.students[0]') AS first_student;
/*-----------------*
| first_student |
+-----------------+
| NULL |
*-----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
'$.class.students[0]') AS first_student;
/*-----------------*
| first_student |
+-----------------+
| {"name":"John"} |
*-----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "Jane"}]}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| NULL |
*----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": []}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| NULL |
*----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "John"}, {"name": null}]}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| NULL |
*----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| "Jamie" |
*----------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "Jane"}]}}',
"$.class['students']") AS student_names;
/*------------------------------------*
| student_names |
+------------------------------------+
| [{"name":"Jane"}] |
*------------------------------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": []}}',
"$.class['students']") AS student_names;
/*------------------------------------*
| student_names |
+------------------------------------+
| [] |
*------------------------------------*/
SELECT JSON_EXTRACT(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
"$.class['students']") AS student_names;
/*------------------------------------*
| student_names |
+------------------------------------+
| [{"name":"John"},{"name":"Jamie"}] |
*------------------------------------*/
SELECT JSON_EXTRACT('{"a": null}', "$.a"); -- Returns a SQL NULL
SELECT JSON_EXTRACT('{"a": null}', "$.b"); -- Returns a SQL NULL
SELECT JSON_EXTRACT(JSON '{"a": null}', "$.a"); -- Returns a JSON 'null'
SELECT JSON_EXTRACT(JSON '{"a": null}', "$.b"); -- Returns a SQL NULL
Note: This function is deprecated. Consider using JSON_QUERY_ARRAY.
JSON_EXTRACT_ARRAY(json_string_expr[, json_path])
JSON_EXTRACT_ARRAY(json_expr[, json_path])
Description
Extracts a JSON array and converts it to a SQL ARRAY<JSON-formatted STRING>
or ARRAY<JSON>
value. This function uses single quotes and brackets to escape invalid JSONPath characters in JSON keys. For example: ['a.b']
.
Arguments:
json_string_expr
: A JSON-formatted string. For example:
'["a", "b", {"key": "c"}]'
json_expr
: JSON. For example:
JSON '["a", "b", {"key": "c"}]'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter isn't provided, then the JSONPath $
symbol is applied, which means that all of the data is analyzed.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Return type
json_string_expr
: ARRAY<JSON-formatted STRING>
json_expr
: ARRAY<JSON>
Examples
This extracts items in JSON to an array of JSON
values:
SELECT JSON_EXTRACT_ARRAY(
JSON '{"fruits":["apples","oranges","grapes"]}','$.fruits'
) AS json_array;
/*---------------------------------*
| json_array |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
*---------------------------------*/
This extracts the items in a JSON-formatted string to a string array:
SELECT JSON_EXTRACT_ARRAY('[1,2,3]') AS string_array;
/*--------------*
| string_array |
+--------------+
| [1, 2, 3] |
*--------------*/
This extracts a string array and converts it to an integer array:
SELECT ARRAY(
SELECT CAST(integer_element AS INT64)
FROM UNNEST(
JSON_EXTRACT_ARRAY('[1,2,3]','$')
) AS integer_element
) AS integer_array;
/*---------------*
| integer_array |
+---------------+
| [1, 2, 3] |
*---------------*/
This extracts string values in a JSON-formatted string to an array:
-- Doesn't strip the double quotes
SELECT JSON_EXTRACT_ARRAY('["apples", "oranges", "grapes"]', '$') AS string_array;
/*---------------------------------*
| string_array |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
*---------------------------------*/
-- Strips the double quotes
SELECT ARRAY(
SELECT JSON_EXTRACT_SCALAR(string_element, '$')
FROM UNNEST(JSON_EXTRACT_ARRAY('["apples","oranges","grapes"]','$')) AS string_element
) AS string_array;
/*---------------------------*
| string_array |
+---------------------------+
| [apples, oranges, grapes] |
*---------------------------*/
This extracts only the items in the fruit
property to an array:
SELECT JSON_EXTRACT_ARRAY(
'{"fruit": [{"apples": 5, "oranges": 10}, {"apples": 2, "oranges": 4}], "vegetables": [{"lettuce": 7, "kale": 8}]}',
'$.fruit'
) AS string_array;
/*-------------------------------------------------------*
| string_array |
+-------------------------------------------------------+
| [{"apples":5,"oranges":10}, {"apples":2,"oranges":4}] |
*-------------------------------------------------------*/
These are equivalent:
SELECT JSON_EXTRACT_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$[fruits]') AS string_array;
SELECT JSON_EXTRACT_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits') AS string_array;
-- The queries above produce the following result:
/*---------------------------------*
| string_array |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
*---------------------------------*/
In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets, [' ']
. For example:
SELECT JSON_EXTRACT_ARRAY('{"a.b": {"c": ["world"]}}', "$['a.b'].c") AS hello;
/*-----------*
| hello |
+-----------+
| ["world"] |
*-----------*/
The following examples explore how invalid requests and empty arrays are handled:
-- An error is thrown if you provide an invalid JSONPath.
SELECT JSON_EXTRACT_ARRAY('["foo", "bar", "baz"]', 'INVALID_JSONPath') AS result;
-- If the JSONPath doesn't refer to an array, then NULL is returned.
SELECT JSON_EXTRACT_ARRAY('{"a": "foo"}', '$.a') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a key that doesn't exist is specified, then the result is NULL.
SELECT JSON_EXTRACT_ARRAY('{"a": "foo"}', '$.b') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- Empty arrays in JSON-formatted strings are supported.
SELECT JSON_EXTRACT_ARRAY('{"a": "foo", "b": []}', '$.b') AS result;
/*--------*
| result |
+--------+
| [] |
*--------*/
Note: This function is deprecated. Consider using JSON_VALUE.
JSON_EXTRACT_SCALAR(json_string_expr[, json_path])
JSON_EXTRACT_SCALAR(json_expr[, json_path])
Description
Extracts a JSON scalar value and converts it to a SQL STRING
value. In addition, this function:
NULL
if a non-scalar value is selected.['a.b']
.Arguments:
json_string_expr
: A JSON-formatted string. For example:
'{"name": "Jane", "age": "6"}'
json_expr
: JSON. For example:
JSON '{"name": "Jane", "age": "6"}'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter isn't provided, then the JSONPath $
symbol is applied, which means that all of the data is analyzed.
If json_path
returns a JSON null
or a non-scalar value (in other words, if json_path
refers to an object or an array), then a SQL NULL
is returned.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Return type
STRING
Examples
In the following example, age
is extracted.
SELECT JSON_EXTRACT_SCALAR(JSON '{"name": "Jakob", "age": "6" }', '$.age') AS scalar_age;
/*------------*
| scalar_age |
+------------+
| 6 |
*------------*/
The following example compares how results are returned for the JSON_EXTRACT
and JSON_EXTRACT_SCALAR
functions.
SELECT JSON_EXTRACT('{"name": "Jakob", "age": "6" }', '$.name') AS json_name,
JSON_EXTRACT_SCALAR('{"name": "Jakob", "age": "6" }', '$.name') AS scalar_name,
JSON_EXTRACT('{"name": "Jakob", "age": "6" }', '$.age') AS json_age,
JSON_EXTRACT_SCALAR('{"name": "Jakob", "age": "6" }', '$.age') AS scalar_age;
/*-----------+-------------+----------+------------*
| json_name | scalar_name | json_age | scalar_age |
+-----------+-------------+----------+------------+
| "Jakob" | Jakob | "6" | 6 |
*-----------+-------------+----------+------------*/
SELECT JSON_EXTRACT('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_extract,
JSON_EXTRACT_SCALAR('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_extract_scalar;
/*--------------------+---------------------*
| json_extract | json_extract_scalar |
+--------------------+---------------------+
| ["apple","banana"] | NULL |
*--------------------+---------------------*/
In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets, [' ']
. For example:
SELECT JSON_EXTRACT_SCALAR('{"a.b": {"c": "world"}}', "$['a.b'].c") AS hello;
/*-------*
| hello |
+-------+
| world |
*-------*/
Note: This function is deprecated. Consider using JSON_VALUE_ARRAY.
JSON_EXTRACT_STRING_ARRAY(json_string_expr[, json_path])
JSON_EXTRACT_STRING_ARRAY(json_expr[, json_path])
Description
Extracts a JSON array of scalar values and converts it to a SQL ARRAY<STRING>
value. In addition, this function:
NULL
if the selected value isn't an array or not an array containing only scalar values.['a.b']
.Arguments:
json_string_expr
: A JSON-formatted string. For example:
'["apples", "oranges", "grapes"]'
json_expr
: JSON. For example:
JSON '["apples", "oranges", "grapes"]'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter isn't provided, then the JSONPath $
symbol is applied, which means that all of the data is analyzed.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Caveats:
null
in the input array produces a SQL NULL
as the output for that JSON null
. If the output contains a NULL
array element, an error is produced because the final output can't be an array with NULL
values.null
, then the output of the function must be transformed because the final output can't be an array with NULL
values.Return type
ARRAY<STRING>
Examples
This extracts items in JSON to a string array:
SELECT JSON_EXTRACT_STRING_ARRAY(
JSON '{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits'
) AS string_array;
/*---------------------------*
| string_array |
+---------------------------+
| [apples, oranges, grapes] |
*---------------------------*/
The following example compares how results are returned for the JSON_EXTRACT_ARRAY
and JSON_EXTRACT_STRING_ARRAY
functions.
SELECT JSON_EXTRACT_ARRAY('["apples", "oranges"]') AS json_array,
JSON_EXTRACT_STRING_ARRAY('["apples", "oranges"]') AS string_array;
/*-----------------------+-------------------*
| json_array | string_array |
+-----------------------+-------------------+
| ["apples", "oranges"] | [apples, oranges] |
*-----------------------+-------------------*/
This extracts the items in a JSON-formatted string to a string array:
-- Strips the double quotes
SELECT JSON_EXTRACT_STRING_ARRAY('["foo", "bar", "baz"]', '$') AS string_array;
/*-----------------*
| string_array |
+-----------------+
| [foo, bar, baz] |
*-----------------*/
This extracts a string array and converts it to an integer array:
SELECT ARRAY(
SELECT CAST(integer_element AS INT64)
FROM UNNEST(
JSON_EXTRACT_STRING_ARRAY('[1, 2, 3]', '$')
) AS integer_element
) AS integer_array;
/*---------------*
| integer_array |
+---------------+
| [1, 2, 3] |
*---------------*/
These are equivalent:
SELECT JSON_EXTRACT_STRING_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$[fruits]') AS string_array;
SELECT JSON_EXTRACT_STRING_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits') AS string_array;
-- The queries above produce the following result:
/*---------------------------*
| string_array |
+---------------------------+
| [apples, oranges, grapes] |
*---------------------------*/
In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using single quotes and brackets: [' ']
. For example:
SELECT JSON_EXTRACT_STRING_ARRAY('{"a.b": {"c": ["world"]}}', "$['a.b'].c") AS hello;
/*---------*
| hello |
+---------+
| [world] |
*---------*/
The following examples explore how invalid requests and empty arrays are handled:
-- An error is thrown if you provide an invalid JSONPath.
SELECT JSON_EXTRACT_STRING_ARRAY('["foo", "bar", "baz"]', 'INVALID_JSONPath') AS result;
-- If the JSON formatted string is invalid, then NULL is returned.
SELECT JSON_EXTRACT_STRING_ARRAY('}}', '$') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If the JSON document is NULL, then NULL is returned.
SELECT JSON_EXTRACT_STRING_ARRAY(NULL, '$') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath doesn't match anything, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a": ["foo", "bar", "baz"]}', '$.b') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an object that isn't an array, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a": "foo"}', '$') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an array of non-scalar objects, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a": [{"b": "foo", "c": 1}, {"b": "bar", "c":2}], "d": "baz"}', '$.a') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an array of mixed scalar and non-scalar objects, then the output is NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a": [10, {"b": 20}]', '$.a') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an empty JSON array, then the output is an empty array instead of NULL.
SELECT JSON_EXTRACT_STRING_ARRAY('{"a": "foo", "b": []}', '$.b') AS result;
/*--------*
| result |
+--------+
| [] |
*--------*/
-- The following query produces and error because the final output can't be an
-- array with NULLs.
SELECT JSON_EXTRACT_STRING_ARRAY('["world", 1, null]') AS result;
JSON_KEYS
Preview
This product or feature is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms. Pre-GA products and features are available "as is" and might have limited support. For more information, see the launch stage descriptions.
Note: To provide feedback or request support for this feature, send an email to bigquery-sql-preview-support@google.com.JSON_KEYS(
json_expr
[, max_depth ]
[, mode => { 'strict' | 'lax' | 'lax recursive' } ]
)
Description
Extracts unique JSON keys from a JSON expression.
Arguments:
json_expr
: JSON
. For example:
JSON '{"class": {"students": [{"name": "Jane"}]}}'
max_depth
: An INT64
value that represents the maximum depth of nested fields to search in json_expr
. If not set, the function searches the entire JSON document.
mode
: A named argument with a STRING
value that can be one of the following:
strict
(default): Ignore any key that appears in an array.lax
: Also include keys contained in non-consecutively nested arrays.lax recursive
: Return all keys.Details:
json_expr
or mode
is SQL NULL
, the function returns SQL NULL
.max_depth
is SQL NULL
, the function ignores the argument.max_depth
is less than or equal to 0, then an error is returned.Return type
ARRAY<STRING>
Examples
In the following example, there are no arrays, so all keys are returned.
SELECT JSON_KEYS(JSON '{"a": {"b":1}}') AS json_keys
/*-----------*
| json_keys |
*-----------*
| [a, a.b] |
*-----------*/
In the following example, max_depth
is set to 1 so "a.b" isn't included.
SELECT JSON_KEYS(JSON '{"a": {"b":1}}', 1) AS json_keys
/*-----------*
| json_keys |
*-----------*
| [a] |
*-----------*/
In the following example, the json_expr
argument contains an array. Because the mode is strict
, keys inside the array are excluded.
SELECT JSON_KEYS(JSON '{"a":[{"b":1}, {"c":2}], "d":3}') AS json_keys
/*-----------*
| json_keys |
*-----------*
| [a, d] |
*-----------*/
In the following example, the json_expr
argument contains an array. Because the mode is lax
, keys inside the array are included.
SELECT JSON_KEYS(
JSON '{"a":[{"b":1}, {"c":2}], "d":3}',
mode => "lax") as json_keys
/*------------------*
| json_keys |
*------------------*
| [a, a.b, a.c, d] |
*------------------*/
In the following example, the json_expr
argument contains consecutively nested arrays. Because the mode is lax
, keys inside the consecutively nested arrays aren't included.
SELECT JSON_KEYS(JSON '{"a":[[{"b":1}]]}', mode => "lax") as json_keys
/*-----------*
| json_keys |
*-----------*
| [a] |
*-----------*/
In the following example, the json_expr
argument contains consecutively nested arrays. Because the mode is lax recursive
, every key is returned.
SELECT JSON_KEYS(JSON '{"a":[[{"b":1}]]}', mode => "lax recursive") as json_keys
/*-----------*
| json_keys |
*-----------*
| [a, a.b] |
*-----------*/
In the following example, the json_expr
argument contains multiple arrays. Because the arrays aren't consecutively nested and the mode is lax
, keys inside the arrays are included.
SELECT JSON_KEYS(JSON '{"a":[{"b":[{"c":1}]}]}', mode => "lax") as json_keys
/*-----------------*
| json_keys |
*-----------------*
| [a, a.b, a.b.c] |
*-----------------*/
In the following example, the json_expr
argument contains both consecutively nested and single arrays. Because the mode is lax
, keys inside the consecutively nested arrays are excluded.
SELECT JSON_KEYS(JSON '{"a":[{"b":[[{"c":1}]]}]}', mode => "lax") as json_keys
/*-----------*
| json_keys |
*-----------*
| [a, a.b] |
*-----------*/
In the following example, the json_expr
argument contains both consecutively nested and single arrays. Because the mode is lax recursive
, all keys are included.
SELECT JSON_KEYS(
JSON '{"a":[{"b":[[{"c":1}]]}]}', mode => "lax recursive") as json_keys
/*-----------------*
| json_keys |
*-----------------*
| [a, a.b, a.b.c] |
*-----------------*/
JSON_OBJECT
JSON_OBJECT([json_key, json_value][, ...])
JSON_OBJECT(json_key_array, json_value_array)
JSON_OBJECT([json_key, json_value][, ...])
Description
Creates a JSON object, using key-value pairs.
Arguments:
json_key
: A STRING
value that represents a key.json_value
: A JSON encoding-supported value.Details:
json_key
is NULL
, an error is produced.Return type
JSON
Examples
You can create an empty JSON object by passing in no JSON keys and values. For example:
SELECT JSON_OBJECT() AS json_data
/*-----------*
| json_data |
+-----------+
| {} |
*-----------*/
You can create a JSON object by passing in key-value pairs. For example:
SELECT JSON_OBJECT('foo', 10, 'bar', TRUE) AS json_data
/*-----------------------*
| json_data |
+-----------------------+
| {"bar":true,"foo":10} |
*-----------------------*/
SELECT JSON_OBJECT('foo', 10, 'bar', ['a', 'b']) AS json_data
/*----------------------------*
| json_data |
+----------------------------+
| {"bar":["a","b"],"foo":10} |
*----------------------------*/
SELECT JSON_OBJECT('a', NULL, 'b', JSON 'null') AS json_data
/*---------------------*
| json_data |
+---------------------+
| {"a":null,"b":null} |
*---------------------*/
SELECT JSON_OBJECT('a', 10, 'a', 'foo') AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":10} |
*-----------*/
WITH Items AS (SELECT 'hello' AS key, 'world' AS value)
SELECT JSON_OBJECT(key, value) AS json_data FROM Items
/*-------------------*
| json_data |
+-------------------+
| {"hello":"world"} |
*-------------------*/
An error is produced if a SQL NULL
is passed in for a JSON key.
-- Error: A key can't be NULL.
SELECT JSON_OBJECT(NULL, 1) AS json_data
An error is produced if the number of JSON keys and JSON values don't match:
-- Error: No matching signature for function JSON_OBJECT for argument types:
-- STRING, INT64, STRING
SELECT JSON_OBJECT('a', 1, 'b') AS json_data
Signature 2
JSON_OBJECT(json_key_array, json_value_array)
Creates a JSON object, using an array of keys and values.
Arguments:
json_key_array
: An array of zero or more STRING
keys.json_value_array
: An array of zero or more JSON encoding-supported values.Details:
NULL
, an error is produced.json_key_array
is NULL
, an error is produced.Return type
JSON
Examples
You can create an empty JSON object by passing in an empty array of keys and values. For example:
SELECT JSON_OBJECT(CAST([] AS ARRAY<STRING>), []) AS json_data
/*-----------*
| json_data |
+-----------+
| {} |
*-----------*/
You can create a JSON object by passing in an array of keys and an array of values. For example:
SELECT JSON_OBJECT(['a', 'b'], [10, NULL]) AS json_data
/*-------------------*
| json_data |
+-------------------+
| {"a":10,"b":null} |
*-------------------*/
SELECT JSON_OBJECT(['a', 'b'], [JSON '10', JSON '"foo"']) AS json_data
/*--------------------*
| json_data |
+--------------------+
| {"a":10,"b":"foo"} |
*--------------------*/
SELECT
JSON_OBJECT(
['a', 'b'],
[STRUCT(10 AS id, 'Red' AS color), STRUCT(20 AS id, 'Blue' AS color)])
AS json_data
/*------------------------------------------------------------*
| json_data |
+------------------------------------------------------------+
| {"a":{"color":"Red","id":10},"b":{"color":"Blue","id":20}} |
*------------------------------------------------------------*/
SELECT
JSON_OBJECT(
['a', 'b'],
[TO_JSON(10), TO_JSON(['foo', 'bar'])])
AS json_data
/*----------------------------*
| json_data |
+----------------------------+
| {"a":10,"b":["foo","bar"]} |
*----------------------------*/
The following query groups by id
and then creates an array of keys and values from the rows with the same id
:
WITH
Fruits AS (
SELECT 0 AS id, 'color' AS json_key, 'red' AS json_value UNION ALL
SELECT 0, 'fruit', 'apple' UNION ALL
SELECT 1, 'fruit', 'banana' UNION ALL
SELECT 1, 'ripe', 'true'
)
SELECT JSON_OBJECT(ARRAY_AGG(json_key), ARRAY_AGG(json_value)) AS json_data
FROM Fruits
GROUP BY id
/*----------------------------------*
| json_data |
+----------------------------------+
| {"color":"red","fruit":"apple"} |
| {"fruit":"banana","ripe":"true"} |
*----------------------------------*/
An error is produced if the size of the JSON keys and values arrays don't match:
-- Error: The number of keys and values must match.
SELECT JSON_OBJECT(['a', 'b'], [10]) AS json_data
An error is produced if the array of JSON keys or JSON values is a SQL NULL
.
-- Error: The keys array can't be NULL.
SELECT JSON_OBJECT(CAST(NULL AS ARRAY<STRING>), [10, 20]) AS json_data
-- Error: The values array can't be NULL.
SELECT JSON_OBJECT(['a', 'b'], CAST(NULL AS ARRAY<INT64>)) AS json_data
JSON_QUERY
JSON_QUERY(json_string_expr, json_path)
JSON_QUERY(json_expr, json_path)
Description
Extracts a JSON value and converts it to a SQL JSON-formatted STRING
or JSON
value. This function uses double quotes to escape invalid JSONPath characters in JSON keys. For example: "a.b"
.
Arguments:
json_string_expr
: A JSON-formatted string. For example:
'{"class": {"students": [{"name": "Jane"}]}}'
Extracts a SQL NULL
when a JSON-formatted string null
is encountered. For example:
SELECT JSON_QUERY("null", "$") -- Returns a SQL NULL
json_expr
: JSON. For example:
JSON '{"class": {"students": [{"name": "Jane"}]}}'
Extracts a JSON null
when a JSON null
is encountered.
SELECT JSON_QUERY(JSON 'null', "$") -- Returns a JSON 'null'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. This function lets you specify a mode for the JSONPath.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Return type
json_string_expr
: A JSON-formatted STRING
json_expr
: JSON
Examples
In the following example, JSON data is extracted and returned as JSON.
SELECT
JSON_QUERY(
JSON '{"class": {"students": [{"id": 5}, {"id": 12}]}}',
'$.class') AS json_data;
/*-----------------------------------*
| json_data |
+-----------------------------------+
| {"students":[{"id":5},{"id":12}]} |
*-----------------------------------*/
In the following examples, JSON data is extracted and returned as JSON-formatted strings.
SELECT
JSON_QUERY('{"class": {"students": [{"name": "Jane"}]}}', '$') AS json_text_string;
/*-----------------------------------------------------------*
| json_text_string |
+-----------------------------------------------------------+
| {"class":{"students":[{"name":"Jane"}]}} |
*-----------------------------------------------------------*/
SELECT JSON_QUERY('{"class": {"students": []}}', '$') AS json_text_string;
/*-----------------------------------------------------------*
| json_text_string |
+-----------------------------------------------------------+
| {"class":{"students":[]}} |
*-----------------------------------------------------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "John"},{"name": "Jamie"}]}}',
'$') AS json_text_string;
/*-----------------------------------------------------------*
| json_text_string |
+-----------------------------------------------------------+
| {"class":{"students":[{"name":"John"},{"name":"Jamie"}]}} |
*-----------------------------------------------------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "Jane"}]}}',
'$.class.students[0]') AS first_student;
/*-----------------*
| first_student |
+-----------------+
| {"name":"Jane"} |
*-----------------*/
SELECT
JSON_QUERY('{"class": {"students": []}}', '$.class.students[0]') AS first_student;
/*-----------------*
| first_student |
+-----------------+
| NULL |
*-----------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
'$.class.students[0]') AS first_student;
/*-----------------*
| first_student |
+-----------------+
| {"name":"John"} |
*-----------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "Jane"}]}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| NULL |
*----------------*/
SELECT
JSON_QUERY(
'{"class": {"students": []}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| NULL |
*----------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "John"}, {"name": null}]}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| NULL |
*----------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
'$.class.students[1].name') AS second_student;
/*----------------*
| second_student |
+----------------+
| "Jamie" |
*----------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "Jane"}]}}',
'$.class."students"') AS student_names;
/*------------------------------------*
| student_names |
+------------------------------------+
| [{"name":"Jane"}] |
*------------------------------------*/
SELECT
JSON_QUERY(
'{"class": {"students": []}}',
'$.class."students"') AS student_names;
/*------------------------------------*
| student_names |
+------------------------------------+
| [] |
*------------------------------------*/
SELECT
JSON_QUERY(
'{"class": {"students": [{"name": "John"}, {"name": "Jamie"}]}}',
'$.class."students"') AS student_names;
/*------------------------------------*
| student_names |
+------------------------------------+
| [{"name":"John"},{"name":"Jamie"}] |
*------------------------------------*/
In the following examples, the JSON data is extracted in lax mode. Because the keyword lax
is included in the JSONPath
, JSON arrays are automatically unwrapped.
SELECT
JSON_QUERY(
JSON '{"class": {"students": [{"name": "Jane"}]}}',
'lax $.class.students.name') AS student_names_lax;
/*-------------------*
| student_names_lax |
*-------------------*
| ["Jane"] |
*-------------------*/
SELECT
JSON_QUERY(
JSON '[{"class": {"students": [{"name": "Joe"}, {"name": "Jamie"}]}}]',
'lax $.class.students.name') AS student_names_lax;
/*-------------------*
| student_names_lax |
*-------------------*
| ["Joe","Jamie"] |
*-------------------*/
SELECT
JSON_QUERY(
JSON '{"class": {"students": [[{"name": "John"}], {"name": "Jamie"}]}}',
'lax $.class.students.name') AS student_names_lax;
/*-------------------*
| student_names_lax |
*-------------------*
| ["Jamie"] |
*-------------------*/
In the following examples, the JSON data is extracted in lax recursive mode. Because the keyword lax recursive
is included in the JSONPath
, JSON arrays are unwrapped until a non-array type is found.
SELECT
JSON_QUERY(
JSON '{"class": {"students": [{"name": "Jane"}]}}',
'lax recursive $.class.students.name') AS student_names_lax_recursive;
/*-----------------------------*
| student_names_lax_recursive |
*-----------------------------*
| ["Jane"] |
*-----------------------------*/
SELECT
JSON_QUERY(
JSON '[[{"class": {"students": [{"name": "Joe"}, {"name": "Jamie"}]}}]]',
'lax recursive $.class.students.name') AS student_names_lax_recursive;
/*-----------------------------*
| student_names_lax_recursive |
*-----------------------------*
| ["Joe","Jamie"] |
*-----------------------------*/
SELECT
JSON_QUERY(
JSON '{"class": {"students": [[{"name": "John"}], {"name": "Jamie"}]}}',
'lax recursive $.class.students.name') AS student_names_lax_recursive;
/*-----------------------------*
| student_names_lax_recursive |
*-----------------------------*
| ["John","Jamie"] |
*-----------------------------*/
In the following examples, the keywords lax
and lax recursive
indicate that non-array types should be wrapped into arrays of size 1 before matching. The modes lax
and lax recursive
behave identically for wrapping arrays.
SELECT
JSON_QUERY(
JSON '{"class": {"students": {"name": "Jane"}}}',
'lax $.class[0].students[0].name') AS student_names_lax,
JSON_QUERY(
JSON '{"class": {"students": {"name": "Jane"}}}',
'lax recursive $.class[0].students[0].name') AS student_names_lax_recursive;
/*-------------------*-----------------------------*
| student_names_lax | student_names_lax_recursive |
*-------------------*-----------------------------*
| ["Jane"] | ["Jane"] |
*-------------------*-----------------------------*/
SELECT
JSON_QUERY(
JSON '[{"class": {"students": [{"name": "Joe"}, {"name": "Jamie"}]}}]',
'lax $.class[0].students[0].name') AS student_names_lax,
JSON_QUERY(
JSON '[{"class": {"students": [{"name": "Joe"}, {"name": "Jamie"}]}}]',
'lax recursive $.class[0].students[0].name') AS student_names_lax_recursive;
/*-------------------*-----------------------------*
| student_names_lax | student_names_lax_recursive |
*-------------------*-----------------------------*
| ["Joe"] | ["Joe"] |
*-------------------*-----------------------------*/
SELECT
JSON_QUERY(
JSON '{"class": {"students": [[{"name": "John"}], {"name": "Jamie"}]}}',
'lax $.class[0].students[0].name') AS student_names_lax,
JSON_QUERY(
JSON '{"class": {"students": [[{"name": "John"}], {"name": "Jamie"}]}}',
'lax recursive $.class[0].students[0].name') AS student_names_lax_recursive;
/*-------------------*-----------------------------*
| student_names_lax | student_names_lax_recursive |
*-------------------*-----------------------------*
| ["John"] | ["John"] |
*-------------------*-----------------------------*/
SELECT JSON_QUERY('{"a": null}', "$.a"); -- Returns a SQL NULL
SELECT JSON_QUERY('{"a": null}', "$.b"); -- Returns a SQL NULL
SELECT JSON_QUERY(JSON '{"a": null}', "$.a"); -- Returns a JSON 'null'
SELECT JSON_QUERY(JSON '{"a": null}', "$.b"); -- Returns a SQL NULL
JSON_QUERY_ARRAY
JSON_QUERY_ARRAY(json_string_expr[, json_path])
JSON_QUERY_ARRAY(json_expr[, json_path])
Description
Extracts a JSON array and converts it to a SQL ARRAY<JSON-formatted STRING>
or ARRAY<JSON>
value. In addition, this function uses double quotes to escape invalid JSONPath characters in JSON keys. For example: "a.b"
.
Arguments:
json_string_expr
: A JSON-formatted string. For example:
'["a", "b", {"key": "c"}]'
json_expr
: JSON. For example:
JSON '["a", "b", {"key": "c"}]'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter isn't provided, then the JSONPath $
symbol is applied, which means that all of the data is analyzed.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Return type
json_string_expr
: ARRAY<JSON-formatted STRING>
json_expr
: ARRAY<JSON>
Examples
This extracts items in JSON to an array of JSON
values:
SELECT JSON_QUERY_ARRAY(
JSON '{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits'
) AS json_array;
/*---------------------------------*
| json_array |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
*---------------------------------*/
This extracts the items in a JSON-formatted string to a string array:
SELECT JSON_QUERY_ARRAY('[1, 2, 3]') AS string_array;
/*--------------*
| string_array |
+--------------+
| [1, 2, 3] |
*--------------*/
This extracts a string array and converts it to an integer array:
SELECT ARRAY(
SELECT CAST(integer_element AS INT64)
FROM UNNEST(
JSON_QUERY_ARRAY('[1, 2, 3]','$')
) AS integer_element
) AS integer_array;
/*---------------*
| integer_array |
+---------------+
| [1, 2, 3] |
*---------------*/
This extracts string values in a JSON-formatted string to an array:
-- Doesn't strip the double quotes
SELECT JSON_QUERY_ARRAY('["apples", "oranges", "grapes"]', '$') AS string_array;
/*---------------------------------*
| string_array |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
*---------------------------------*/
-- Strips the double quotes
SELECT ARRAY(
SELECT JSON_VALUE(string_element, '$')
FROM UNNEST(JSON_QUERY_ARRAY('["apples", "oranges", "grapes"]', '$')) AS string_element
) AS string_array;
/*---------------------------*
| string_array |
+---------------------------+
| [apples, oranges, grapes] |
*---------------------------*/
This extracts only the items in the fruit
property to an array:
SELECT JSON_QUERY_ARRAY(
'{"fruit": [{"apples": 5, "oranges": 10}, {"apples": 2, "oranges": 4}], "vegetables": [{"lettuce": 7, "kale": 8}]}',
'$.fruit'
) AS string_array;
/*-------------------------------------------------------*
| string_array |
+-------------------------------------------------------+
| [{"apples":5,"oranges":10}, {"apples":2,"oranges":4}] |
*-------------------------------------------------------*/
These are equivalent:
SELECT JSON_QUERY_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits') AS string_array;
SELECT JSON_QUERY_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$."fruits"') AS string_array;
-- The queries above produce the following result:
/*---------------------------------*
| string_array |
+---------------------------------+
| ["apples", "oranges", "grapes"] |
*---------------------------------*/
In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes: " "
. For example:
SELECT JSON_QUERY_ARRAY('{"a.b": {"c": ["world"]}}', '$."a.b".c') AS hello;
/*-----------*
| hello |
+-----------+
| ["world"] |
*-----------*/
The following examples show how invalid requests and empty arrays are handled:
-- An error is returned if you provide an invalid JSONPath.
SELECT JSON_QUERY_ARRAY('["foo", "bar", "baz"]', 'INVALID_JSONPath') AS result;
-- If the JSONPath doesn't refer to an array, then NULL is returned.
SELECT JSON_QUERY_ARRAY('{"a": "foo"}', '$.a') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a key that doesn't exist is specified, then the result is NULL.
SELECT JSON_QUERY_ARRAY('{"a": "foo"}', '$.b') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- Empty arrays in JSON-formatted strings are supported.
SELECT JSON_QUERY_ARRAY('{"a": "foo", "b": []}', '$.b') AS result;
/*--------*
| result |
+--------+
| [] |
*--------*/
JSON_REMOVE
JSON_REMOVE(json_expr, json_path[, ...])
Produces a new SQL JSON
value with the specified JSON data removed.
Arguments:
json_expr
: JSON. For example:
JSON '{"class": {"students": [{"name": "Jane"}]}}'
json_path
: Remove data at this JSONPath in json_expr
.
Details:
json_path
is $
or an invalid JSONPath, an error is produced.json_path
is SQL NULL
, the path operation is ignored.Return type
JSON
Examples
In the following example, the path $[1]
is matched and removes ["b", "c"]
.
SELECT JSON_REMOVE(JSON '["a", ["b", "c"], "d"]', '$[1]') AS json_data
/*-----------*
| json_data |
+-----------+
| ["a","d"] |
*-----------*/
You can use the field access operator to pass JSON data into this function. For example:
WITH T AS (SELECT JSON '{"a": {"b": 10, "c": 20}}' AS data)
SELECT JSON_REMOVE(data.a, '$.b') AS json_data FROM T
/*-----------*
| json_data |
+-----------+
| {"c":20} |
*-----------*/
In the following example, the first path $[1]
is matched and removes ["b", "c"]
. Then, the second path $[1]
is matched and removes "d"
.
SELECT JSON_REMOVE(JSON '["a", ["b", "c"], "d"]', '$[1]', '$[1]') AS json_data
/*-----------*
| json_data |
+-----------+
| ["a"] |
*-----------*/
The structure of an empty array is preserved when all elements are deleted from it. For example:
SELECT JSON_REMOVE(JSON '["a", ["b", "c"], "d"]', '$[1]', '$[1]', '$[0]') AS json_data
/*-----------*
| json_data |
+-----------+
| [] |
*-----------*/
In the following example, the path $.a.b.c
is matched and removes the "c":"d"
key-value pair from the JSON object.
SELECT JSON_REMOVE(JSON '{"a": {"b": {"c": "d"}}}', '$.a.b.c') AS json_data
/*----------------*
| json_data |
+----------------+
| {"a":{"b":{}}} |
*----------------*/
In the following example, the path $.a.b
is matched and removes the "b": {"c":"d"}
key-value pair from the JSON object.
SELECT JSON_REMOVE(JSON '{"a": {"b": {"c": "d"}}}', '$.a.b') AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":{}} |
*-----------*/
In the following example, the path $.b
isn't valid, so the operation makes no changes.
SELECT JSON_REMOVE(JSON '{"a": 1}', '$.b') AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":1} |
*-----------*/
In the following example, path $.a.b
and $.b
don't exist, so those operations are ignored, but the others are processed.
SELECT JSON_REMOVE(JSON '{"a": [1, 2, 3]}', '$.a[0]', '$.a.b', '$.b', '$.a[0]') AS json_data
/*-----------*
| json_data |
+-----------+
| {"a":[3]} |
*-----------*/
If you pass in $
as the path, an error is produced. For example:
-- Error: The JSONPath can't be '$'
SELECT JSON_REMOVE(JSON '{}', '$') AS json_data
In the following example, the operation is ignored because you can't remove data from a JSON null.
SELECT JSON_REMOVE(JSON 'null', '$.a.b') AS json_data
/*-----------*
| json_data |
+-----------+
| null |
*-----------*/
JSON_SET
JSON_SET(
json_expr,
json_path_value_pair[, ...]
[, create_if_missing => { TRUE | FALSE } ]
)
json_path_value_pair:
json_path, value
Produces a new SQL JSON
value with the specified JSON data inserted or replaced.
Arguments:
json_expr
: JSON. For example:
JSON '{"class": {"students": [{"name": "Jane"}]}}'
json_path_value_pair
: A value and the JSONPath for that value. This includes:
json_path
: Insert or replace value
at this JSONPath in json_expr
.
value
: A JSON encoding-supported value to insert.
create_if_missing
: A named argument that takes a BOOL
value.
If TRUE
(default), replaces or inserts data if the path doesn't exist.
If FALSE
, only existing JSONPath values are replaced. If the path doesn't exist, the set operation is ignored.
Details:
value
.If create_if_missing
is TRUE
:
value
is inserted.This function applies all path value pair set operations even if an individual path value pair operation is invalid. For invalid operations, the operation is ignored and the function continues to process the rest of the path value pairs.
If the path exists but has an incompatible type at any given path token, no update happens for that specific path value pair.
If any json_path
is an invalid JSONPath, an error is produced.
If json_expr
is SQL NULL
, the function returns SQL NULL
.
If json_path
is SQL NULL
, the json_path_value_pair
operation is ignored.
If create_if_missing
is SQL NULL
, the set operation is ignored.
Return type
JSON
Examples
In the following example, the path $
matches the entire JSON
value and replaces it with {"b": 2, "c": 3}
.
SELECT JSON_SET(JSON '{"a": 1}', '$', JSON '{"b": 2, "c": 3}') AS json_data
/*---------------*
| json_data |
+---------------+
| {"b":2,"c":3} |
*---------------*/
In the following example, create_if_missing
is FALSE
and the path $.b
doesn't exist, so the set operation is ignored.
SELECT JSON_SET(
JSON '{"a": 1}',
"$.b", 999,
create_if_missing => false) AS json_data
/*------------*
| json_data |
+------------+
| '{"a": 1}' |
*------------*/
In the following example, create_if_missing
is TRUE
and the path $.a
exists, so the value is replaced.
SELECT JSON_SET(
JSON '{"a": 1}',
"$.a", 999,
create_if_missing => false) AS json_data
/*--------------*
| json_data |
+--------------+
| '{"a": 999}' |
*--------------*/
In the following example, the path $.a
is matched, but $.a.b
doesn't exist, so the new path and the value are inserted.
SELECT JSON_SET(JSON '{"a": {}}', '$.a.b', 100) AS json_data
/*-----------------*
| json_data |
+-----------------+
| {"a":{"b":100}} |
*-----------------*/
In the following example, the path prefix $
points to a JSON null, so the remainder of the path is created for the value 100
.
SELECT JSON_SET(JSON 'null', '$.a.b', 100) AS json_data
/*-----------------*
| json_data |
+-----------------+
| {"a":{"b":100}} |
*-----------------*/
In the following example, the path $.a.c
implies that the value at $.a
is a JSON object but it's not. This part of the operation is ignored, but the other parts of the operation are completed successfully.
SELECT JSON_SET(
JSON '{"a": 1}',
'$.b', 2,
'$.a.c', 100,
'$.d', 3) AS json_data
/*---------------------*
| json_data |
+---------------------+
| {"a":1,"b":2,"d":3} |
*---------------------*/
In the following example, the path $.a[2]
implies that the value for $.a
is an array, but it's not, so the operation is ignored for that value.
SELECT JSON_SET(
JSON '{"a": 1}',
'$.a[2]', 100,
'$.b', 2) AS json_data
/*---------------*
| json_data |
+---------------+
| {"a":1,"b":2} |
*---------------*/
In the following example, the path $[1]
is matched and replaces the array element value with foo
.
SELECT JSON_SET(JSON '["a", ["b", "c"], "d"]', '$[1]', "foo") AS json_data
/*-----------------*
| json_data |
+-----------------+
| ["a","foo","d"] |
*-----------------*/
In the following example, the path $[1][0]
is matched and replaces the array element value with foo
.
SELECT JSON_SET(JSON '["a", ["b", "c"], "d"]', '$[1][0]', "foo") AS json_data
/*-----------------------*
| json_data |
+-----------------------+
| ["a",["foo","c"],"d"] |
*-----------------------*/
In the following example, the path prefix $
points to a JSON null, so the remainder of the path is created. The resulting array is padded with JSON nulls and appended with foo
.
SELECT JSON_SET(JSON 'null', '$[0][3]', "foo")
/*--------------------------*
| json_data |
+--------------------------+
| [[null,null,null,"foo"]] |
*--------------------------*/
In the following example, the path $[1]
is matched, the matched array is extended since $[1][4]
is larger than the existing array, and then foo
is inserted in the array.
SELECT JSON_SET(JSON '["a", ["b", "c"], "d"]', '$[1][4]', "foo") AS json_data
/*-------------------------------------*
| json_data |
+-------------------------------------+
| ["a",["b","c",null,null,"foo"],"d"] |
*-------------------------------------*/
In the following example, the path $[1][0][0]
implies that the value of $[1][0]
is an array, but it isn't, so the operation is ignored.
SELECT JSON_SET(JSON '["a", ["b", "c"], "d"]', '$[1][0][0]', "foo") AS json_data
/*---------------------*
| json_data |
+---------------------+
| ["a",["b","c"],"d"] |
*---------------------*/
In the following example, the path $[1][2]
is larger than the length of the matched array. The array length is extended and the remainder of the path is recursively created. The operation continues to the path $[1][2][1]
and inserts foo
.
SELECT JSON_SET(JSON '["a", ["b", "c"], "d"]', '$[1][2][1]', "foo") AS json_data
/*----------------------------------*
| json_data |
+----------------------------------+
| ["a",["b","c",[null,"foo"]],"d"] |
*----------------------------------*/
In the following example, because the JSON
object is empty, key b
is inserted, and the remainder of the path is recursively created.
SELECT JSON_SET(JSON '{}', '$.b[2].d', 100) AS json_data
/*-----------------------------*
| json_data |
+-----------------------------+
| {"b":[null,null,{"d":100}]} |
*-----------------------------*/
In the following example, multiple values are set.
SELECT JSON_SET(
JSON '{"a": 1, "b": {"c":3}, "d": [4]}',
'$.a', 'v1',
'$.b.e', 'v2',
'$.d[2]', 'v3') AS json_data
/*---------------------------------------------------*
| json_data |
+---------------------------------------------------+
| {"a":"v1","b":{"c":3,"e":"v2"},"d":[4,null,"v3"]} |
*---------------------------------------------------*/
JSON_STRIP_NULLS
JSON_STRIP_NULLS(
json_expr
[, json_path ]
[, include_arrays => { TRUE | FALSE } ]
[, remove_empty => { TRUE | FALSE } ]
)
Recursively removes JSON nulls from JSON objects and JSON arrays.
Arguments:
json_expr
: JSON. For example:
JSON '{"a": null, "b": "c"}'
json_path
: Remove JSON nulls at this JSONPath for json_expr
.
include_arrays
: A named argument that's either TRUE
(default) or FALSE
. If TRUE
or omitted, the function removes JSON nulls from JSON arrays. If FALSE
, doesn't.
remove_empty
: A named argument that's either TRUE
or FALSE
(default). If TRUE
, the function removes empty JSON objects after JSON nulls are removed. If FALSE
or omitted, doesn't.
If remove_empty
is TRUE
and include_arrays
is TRUE
or omitted, the function additionally removes empty JSON arrays.
Details:
remove_empty
is set to TRUE
, the function recursively removes empty containers after JSON nulls are removed.json_path
is an invalid JSONPath, an error is produced.json_expr
is SQL NULL
, the function returns SQL NULL
.json_path
, include_arrays
, or remove_empty
is SQL NULL
, the function returns json_expr
.Return type
JSON
Examples
In the following example, all JSON nulls are removed.
SELECT JSON_STRIP_NULLS(JSON '{"a": null, "b": "c"}') AS json_data
/*-----------*
| json_data |
+-----------+
| {"b":"c"} |
*-----------*/
In the following example, all JSON nulls are removed from a JSON array.
SELECT JSON_STRIP_NULLS(JSON '[1, null, 2, null]') AS json_data
/*-----------*
| json_data |
+-----------+
| [1,2] |
*-----------*/
In the following example, include_arrays
is set as FALSE
so that JSON nulls aren't removed from JSON arrays.
SELECT JSON_STRIP_NULLS(JSON '[1, null, 2, null]', include_arrays=>FALSE) AS json_data
/*-----------------*
| json_data |
+-----------------+
| [1,null,2,null] |
*-----------------*/
In the following example, remove_empty
is omitted and defaults to FALSE
, and the empty structures are retained.
SELECT JSON_STRIP_NULLS(JSON '[1, null, 2, null, [null]]') AS json_data
/*-----------*
| json_data |
+-----------+
| [1,2,[]] |
*-----------*/
In the following example, remove_empty
is set as TRUE
, and the empty structures are removed.
SELECT JSON_STRIP_NULLS(
JSON '[1, null, 2, null, [null]]',
remove_empty=>TRUE) AS json_data
/*-----------*
| json_data |
+-----------+
| [1,2] |
*-----------*/
In the following examples, remove_empty
is set as TRUE
, and the empty structures are removed. Because no JSON data is left the function returns JSON null.
SELECT JSON_STRIP_NULLS(JSON '{"a": null}', remove_empty=>TRUE) AS json_data
/*-----------*
| json_data |
+-----------+
| null |
*-----------*/
SELECT JSON_STRIP_NULLS(JSON '{"a": [null]}', remove_empty=>TRUE) AS json_data
/*-----------*
| json_data |
+-----------+
| null |
*-----------*/
In the following example, empty structures are removed for JSON objects, but not JSON arrays.
SELECT JSON_STRIP_NULLS(
JSON '{"a": {"b": {"c": null}}, "d": [null], "e": [], "f": 1}',
include_arrays=>FALSE,
remove_empty=>TRUE) AS json_data
/*---------------------------*
| json_data |
+---------------------------+
| {"d":[null],"e":[],"f":1} |
*---------------------------*/
In the following example, empty structures are removed for both JSON objects, and JSON arrays.
SELECT JSON_STRIP_NULLS(
JSON '{"a": {"b": {"c": null}}, "d": [null], "e": [], "f": 1}',
remove_empty=>TRUE) AS json_data
/*-----------*
| json_data |
+-----------+
| {"f":1} |
*-----------*/
In the following example, because no JSON data is left, the function returns a JSON null.
SELECT JSON_STRIP_NULLS(JSON 'null') AS json_data
/*-----------*
| json_data |
+-----------+
| null |
*-----------*/
JSON_TYPE
JSON_TYPE(json_expr)
Description
Gets the JSON type of the outermost JSON value and converts the name of this type to a SQL STRING
value. The names of these JSON types can be returned: object
, array
, string
, number
, boolean
, null
Arguments:
json_expr
: JSON. For example:
JSON '{"name": "sky", "color": "blue"}'
If this expression is SQL NULL
, the function returns SQL NULL
. If the extracted JSON value isn't a valid JSON type, an error is produced.
Return type
STRING
Examples
SELECT json_val, JSON_TYPE(json_val) AS type
FROM
UNNEST(
[
JSON '"apple"',
JSON '10',
JSON '3.14',
JSON 'null',
JSON '{"city": "New York", "State": "NY"}',
JSON '["apple", "banana"]',
JSON 'false'
]
) AS json_val;
/*----------------------------------+---------*
| json_val | type |
+----------------------------------+---------+
| "apple" | string |
| 10 | number |
| 3.14 | number |
| null | null |
| {"State":"NY","city":"New York"} | object |
| ["apple","banana"] | array |
| false | boolean |
*----------------------------------+---------*/
JSON_VALUE
JSON_VALUE(json_string_expr[, json_path])
JSON_VALUE(json_expr[, json_path])
Description
Extracts a JSON scalar value and converts it to a SQL STRING
value. In addition, this function:
NULL
if a non-scalar value is selected."a.b"
.Arguments:
json_string_expr
: A JSON-formatted string. For example:
'{"name": "Jakob", "age": "6"}'
json_expr
: JSON. For example:
JSON '{"name": "Jane", "age": "6"}'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter isn't provided, then the JSONPath $
symbol is applied, which means that all of the data is analyzed.
If json_path
returns a JSON null
or a non-scalar value (in other words, if json_path
refers to an object or an array), then a SQL NULL
is returned.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Return type
STRING
Examples
In the following example, JSON data is extracted and returned as a scalar value.
SELECT JSON_VALUE(JSON '{"name": "Jakob", "age": "6" }', '$.age') AS scalar_age;
/*------------*
| scalar_age |
+------------+
| 6 |
*------------*/
The following example compares how results are returned for the JSON_QUERY
and JSON_VALUE
functions.
SELECT JSON_QUERY('{"name": "Jakob", "age": "6"}', '$.name') AS json_name,
JSON_VALUE('{"name": "Jakob", "age": "6"}', '$.name') AS scalar_name,
JSON_QUERY('{"name": "Jakob", "age": "6"}', '$.age') AS json_age,
JSON_VALUE('{"name": "Jakob", "age": "6"}', '$.age') AS scalar_age;
/*-----------+-------------+----------+------------*
| json_name | scalar_name | json_age | scalar_age |
+-----------+-------------+----------+------------+
| "Jakob" | Jakob | "6" | 6 |
*-----------+-------------+----------+------------*/
SELECT JSON_QUERY('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_query,
JSON_VALUE('{"fruits": ["apple", "banana"]}', '$.fruits') AS json_value;
/*--------------------+------------*
| json_query | json_value |
+--------------------+------------+
| ["apple","banana"] | NULL |
*--------------------+------------*/
In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes. For example:
SELECT JSON_VALUE('{"a.b": {"c": "world"}}', '$."a.b".c') AS hello;
/*-------*
| hello |
+-------+
| world |
*-------*/
JSON_VALUE_ARRAY
JSON_VALUE_ARRAY(json_string_expr[, json_path])
JSON_VALUE_ARRAY(json_expr[, json_path])
Description
Extracts a JSON array of scalar values and converts it to a SQL ARRAY<STRING>
value. In addition, this function:
NULL
if the selected value isn't an array or not an array containing only scalar values."a.b"
.Arguments:
json_string_expr
: A JSON-formatted string. For example:
'["apples", "oranges", "grapes"]'
json_expr
: JSON. For example:
JSON '["apples", "oranges", "grapes"]'
json_path
: The JSONPath. This identifies the data that you want to obtain from the input. If this optional parameter isn't provided, then the JSONPath $
symbol is applied, which means that all of the data is analyzed.
There are differences between the JSON-formatted string and JSON input types. For details, see Differences between the JSON and JSON-formatted STRING types.
Caveats:
null
in the input array produces a SQL NULL
as the output for JSON null
. If the output contains a NULL
array element, an error is produced because the final output can't be an array with NULL
values.null
, then the output of the function must be transformed because the final output can't be an array with NULL
values.Return type
ARRAY<STRING>
Examples
This extracts items in JSON to a string array:
SELECT JSON_VALUE_ARRAY(
JSON '{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits'
) AS string_array;
/*---------------------------*
| string_array |
+---------------------------+
| [apples, oranges, grapes] |
*---------------------------*/
The following example compares how results are returned for the JSON_QUERY_ARRAY
and JSON_VALUE_ARRAY
functions.
SELECT JSON_QUERY_ARRAY('["apples", "oranges"]') AS json_array,
JSON_VALUE_ARRAY('["apples", "oranges"]') AS string_array;
/*-----------------------+-------------------*
| json_array | string_array |
+-----------------------+-------------------+
| ["apples", "oranges"] | [apples, oranges] |
*-----------------------+-------------------*/
This extracts the items in a JSON-formatted string to a string array:
-- Strips the double quotes
SELECT JSON_VALUE_ARRAY('["foo", "bar", "baz"]', '$') AS string_array;
/*-----------------*
| string_array |
+-----------------+
| [foo, bar, baz] |
*-----------------*/
This extracts a string array and converts it to an integer array:
SELECT ARRAY(
SELECT CAST(integer_element AS INT64)
FROM UNNEST(
JSON_VALUE_ARRAY('[1, 2, 3]', '$')
) AS integer_element
) AS integer_array;
/*---------------*
| integer_array |
+---------------+
| [1, 2, 3] |
*---------------*/
These are equivalent:
SELECT JSON_VALUE_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$.fruits') AS string_array;
SELECT JSON_VALUE_ARRAY('{"fruits": ["apples", "oranges", "grapes"]}', '$."fruits"') AS string_array;
-- The queries above produce the following result:
/*---------------------------*
| string_array |
+---------------------------+
| [apples, oranges, grapes] |
*---------------------------*/
In cases where a JSON key uses invalid JSONPath characters, you can escape those characters using double quotes: " "
. For example:
SELECT JSON_VALUE_ARRAY('{"a.b": {"c": ["world"]}}', '$."a.b".c') AS hello;
/*---------*
| hello |
+---------+
| [world] |
*---------*/
The following examples explore how invalid requests and empty arrays are handled:
-- An error is thrown if you provide an invalid JSONPath.
SELECT JSON_VALUE_ARRAY('["foo", "bar", "baz"]', 'INVALID_JSONPath') AS result;
-- If the JSON-formatted string is invalid, then NULL is returned.
SELECT JSON_VALUE_ARRAY('}}', '$') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If the JSON document is NULL, then NULL is returned.
SELECT JSON_VALUE_ARRAY(NULL, '$') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath doesn't match anything, then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a": ["foo", "bar", "baz"]}', '$.b') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an object that isn't an array, then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a": "foo"}', '$') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an array of non-scalar objects, then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a": [{"b": "foo", "c": 1}, {"b": "bar", "c": 2}], "d": "baz"}', '$.a') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an array of mixed scalar and non-scalar objects,
-- then the output is NULL.
SELECT JSON_VALUE_ARRAY('{"a": [10, {"b": 20}]', '$.a') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
-- If a JSONPath matches an empty JSON array, then the output is an empty array instead of NULL.
SELECT JSON_VALUE_ARRAY('{"a": "foo", "b": []}', '$.b') AS result;
/*--------*
| result |
+--------+
| [] |
*--------*/
-- The following query produces and error because the final output can't be an
-- array with NULLs.
SELECT JSON_VALUE_ARRAY('["world", 1, null]') AS result;
LAX_BOOL
LAX_BOOL(json_expr)
Description
Attempts to convert a JSON value to a SQL BOOL
value.
Arguments:
json_expr
: JSON. For example:
JSON 'true'
Details:
json_expr
is SQL NULL
, the function returns SQL NULL
.NULL
handling.Conversion rules
From JSON type To SQLBOOL
boolean If the JSON boolean is true
, returns TRUE
. Otherwise, returns FALSE
. string If the JSON string is 'true'
, returns TRUE
. If the JSON string is 'false'
, returns FALSE
. If the JSON string is any other value or has whitespace in it, returns NULL
. This conversion is case-insensitive. number If the JSON number is a representation of 0
, returns FALSE
. Otherwise, returns TRUE
. other type or null NULL
Return type
BOOL
Examples
Example with input that's a JSON boolean:
SELECT LAX_BOOL(JSON 'true') AS result;
/*--------*
| result |
+--------+
| true |
*--------*/
Examples with inputs that are JSON strings:
SELECT LAX_BOOL(JSON '"true"') AS result;
/*--------*
| result |
+--------+
| TRUE |
*--------*/
SELECT LAX_BOOL(JSON '"true "') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
SELECT LAX_BOOL(JSON '"foo"') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
Examples with inputs that are JSON numbers:
SELECT LAX_BOOL(JSON '10') AS result;
/*--------*
| result |
+--------+
| TRUE |
*--------*/
SELECT LAX_BOOL(JSON '0') AS result;
/*--------*
| result |
+--------+
| FALSE |
*--------*/
SELECT LAX_BOOL(JSON '0.0') AS result;
/*--------*
| result |
+--------+
| FALSE |
*--------*/
SELECT LAX_BOOL(JSON '-1.1') AS result;
/*--------*
| result |
+--------+
| TRUE |
*--------*/
LAX_FLOAT64
LAX_FLOAT64(json_expr)
Description
Attempts to convert a JSON value to a SQL FLOAT64
value.
Arguments:
json_expr
: JSON. For example:
JSON '9.8'
Details:
json_expr
is SQL NULL
, the function returns SQL NULL
.NULL
handling.Conversion rules
From JSON type To SQLFLOAT64
boolean NULL
string If the JSON string represents a JSON number, parses it as a BIGNUMERIC
value, and then safe casts the result as a FLOAT64
value. If the JSON string can't be converted, returns NULL
. number Casts the JSON number as a FLOAT64
value. Large JSON numbers are rounded. other type or null NULL
Return type
FLOAT64
Examples
Examples with inputs that are JSON numbers:
SELECT LAX_FLOAT64(JSON '9.8') AS result;
/*--------*
| result |
+--------+
| 9.8 |
*--------*/
SELECT LAX_FLOAT64(JSON '9') AS result;
/*--------*
| result |
+--------+
| 9.0 |
*--------*/
SELECT LAX_FLOAT64(JSON '9007199254740993') AS result;
/*--------------------*
| result |
+--------------------+
| 9007199254740992.0 |
*--------------------*/
SELECT LAX_FLOAT64(JSON '1e100') AS result;
/*--------*
| result |
+--------+
| 1e+100 |
*--------*/
Examples with inputs that are JSON booleans:
SELECT LAX_FLOAT64(JSON 'true') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
SELECT LAX_FLOAT64(JSON 'false') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
Examples with inputs that are JSON strings:
SELECT LAX_FLOAT64(JSON '"10"') AS result;
/*--------*
| result |
+--------+
| 10.0 |
*--------*/
SELECT LAX_FLOAT64(JSON '"1.1"') AS result;
/*--------*
| result |
+--------+
| 1.1 |
*--------*/
SELECT LAX_FLOAT64(JSON '"1.1e2"') AS result;
/*--------*
| result |
+--------+
| 110.0 |
*--------*/
SELECT LAX_FLOAT64(JSON '"9007199254740993"') AS result;
/*--------------------*
| result |
+--------------------+
| 9007199254740992.0 |
*--------------------*/
SELECT LAX_FLOAT64(JSON '"+1.5"') AS result;
/*--------*
| result |
+--------+
| 1.5 |
*--------*/
SELECT LAX_FLOAT64(JSON '"NaN"') AS result;
/*--------*
| result |
+--------+
| NaN |
*--------*/
SELECT LAX_FLOAT64(JSON '"Inf"') AS result;
/*----------*
| result |
+----------+
| Infinity |
*----------*/
SELECT LAX_FLOAT64(JSON '"-InfiNiTY"') AS result;
/*-----------*
| result |
+-----------+
| -Infinity |
*-----------*/
SELECT LAX_FLOAT64(JSON '"foo"') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
LAX_INT64
LAX_INT64(json_expr)
Description
Attempts to convert a JSON value to a SQL INT64
value.
Arguments:
json_expr
: JSON. For example:
JSON '999'
Details:
json_expr
is SQL NULL
, the function returns SQL NULL
.NULL
handling.Conversion rules
From JSON type To SQLINT64
boolean If the JSON boolean is true
, returns 1
. If false
, returns 0
. string If the JSON string represents a JSON number, parses it as a BIGNUMERIC
value, and then safe casts the results as an INT64
value. If the JSON string can't be converted, returns NULL
. number Casts the JSON number as an INT64
value. If the JSON number can't be converted, returns NULL
. other type or null NULL
Return type
INT64
Examples
Examples with inputs that are JSON numbers:
SELECT LAX_INT64(JSON '10') AS result;
/*--------*
| result |
+--------+
| 10 |
*--------*/
SELECT LAX_INT64(JSON '10.0') AS result;
/*--------*
| result |
+--------+
| 10 |
*--------*/
SELECT LAX_INT64(JSON '1.1') AS result;
/*--------*
| result |
+--------+
| 1 |
*--------*/
SELECT LAX_INT64(JSON '3.5') AS result;
/*--------*
| result |
+--------+
| 4 |
*--------*/
SELECT LAX_INT64(JSON '1.1e2') AS result;
/*--------*
| result |
+--------+
| 110 |
*--------*/
SELECT LAX_INT64(JSON '1e100') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
Examples with inputs that are JSON booleans:
SELECT LAX_INT64(JSON 'true') AS result;
/*--------*
| result |
+--------+
| 1 |
*--------*/
SELECT LAX_INT64(JSON 'false') AS result;
/*--------*
| result |
+--------+
| 0 |
*--------*/
Examples with inputs that are JSON strings:
SELECT LAX_INT64(JSON '"10"') AS result;
/*--------*
| result |
+--------+
| 10 |
*--------*/
SELECT LAX_INT64(JSON '"1.1"') AS result;
/*--------*
| result |
+--------+
| 1 |
*--------*/
SELECT LAX_INT64(JSON '"1.1e2"') AS result;
/*--------*
| result |
+--------+
| 110 |
*--------*/
SELECT LAX_INT64(JSON '"+1.5"') AS result;
/*--------*
| result |
+--------+
| 2 |
*--------*/
SELECT LAX_INT64(JSON '"1e100"') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
SELECT LAX_INT64(JSON '"foo"') AS result;
/*--------*
| result |
+--------+
| NULL |
*--------*/
LAX_STRING
LAX_STRING(json_expr)
Description
Attempts to convert a JSON value to a SQL STRING
value.
Arguments:
json_expr
: JSON. For example:
JSON '"name"'
Details:
json_expr
is SQL NULL
, the function returns SQL NULL
.NULL
handling.Conversion rules
From JSON type To SQLSTRING
boolean If the JSON boolean is true
, returns 'true'
. If false
, returns 'false'
. string Returns the JSON string as a STRING
value. number Returns the JSON number as a STRING
value. other type or null NULL
Return type
STRING
Examples
Examples with inputs that are JSON strings:
SELECT LAX_STRING(JSON '"purple"') AS result;
/*--------*
| result |
+--------+
| purple |
*--------*/
SELECT LAX_STRING(JSON '"10"') AS result;
/*--------*
| result |
+--------+
| 10 |
*--------*/
Examples with inputs that are JSON booleans:
SELECT LAX_STRING(JSON 'true') AS result;
/*--------*
| result |
+--------+
| true |
*--------*/
SELECT LAX_STRING(JSON 'false') AS result;
/*--------*
| result |
+--------+
| false |
*--------*/
Examples with inputs that are JSON numbers:
SELECT LAX_STRING(JSON '10.0') AS result;
/*--------*
| result |
+--------+
| 10 |
*--------*/
SELECT LAX_STRING(JSON '10') AS result;
/*--------*
| result |
+--------+
| 10 |
*--------*/
SELECT LAX_STRING(JSON '1e100') AS result;
/*--------*
| result |
+--------+
| 1e+100 |
*--------*/
PARSE_JSON
PARSE_JSON(
json_string_expr
[, wide_number_mode => { 'exact' | 'round' } ]
)
Description
Converts a JSON-formatted STRING
value to a JSON
value.
Arguments:
json_string_expr
: A JSON-formatted string. For example:
'{"class": {"students": [{"name": "Jane"}]}}'
wide_number_mode
: A named argument with a STRING
value. Determines how to handle numbers that can't be stored in a JSON
value without the loss of precision. If used, wide_number_mode
must include one of the following values:
exact
(default): Only accept numbers that can be stored without loss of precision. If a number that can't be stored without loss of precision is encountered, the function throws an error.round
: If a number that can't be stored without loss of precision is encountered, attempt to round it to a number that can be stored without loss of precision. If the number can't be rounded, the function throws an error.If a number appears in a JSON object or array, the wide_number_mode
argument is applied to the number in the object or array.
Numbers from the following domains can be stored in JSON without loss of precision:
INT64
FLOAT64
Return type
JSON
Examples
In the following example, a JSON-formatted string is converted to JSON
.
SELECT PARSE_JSON('{"coordinates": [10, 20], "id": 1}') AS json_data;
/*--------------------------------*
| json_data |
+--------------------------------+
| {"coordinates":[10,20],"id":1} |
*--------------------------------*/
The following queries fail because:
wide_number_mode=>'exact'
is used implicitly in the first query and explicitly in the second query.SELECT PARSE_JSON('{"id": 922337203685477580701}') AS json_data; -- fails
SELECT PARSE_JSON('{"id": 922337203685477580701}', wide_number_mode=>'exact') AS json_data; -- fails
The following query rounds the number to a number that can be stored in JSON.
SELECT PARSE_JSON('{"id": 922337203685477580701}', wide_number_mode=>'round') AS json_data;
/*------------------------------*
| json_data |
+------------------------------+
| {"id":9.223372036854776e+20} |
*------------------------------*/
You can also use valid JSON-formatted strings that don't represent name/value pairs. For example:
SELECT PARSE_JSON('6') AS json_data;
/*------------------------------*
| json_data |
+------------------------------+
| 6 |
*------------------------------*/
SELECT PARSE_JSON('"red"') AS json_data;
/*------------------------------*
| json_data |
+------------------------------+
| "red" |
*------------------------------*/
STRING
STRING(json_expr)
Description
Converts a JSON string to a SQL STRING
value.
Arguments:
json_expr
: JSON. For example:
JSON '"purple"'
If the JSON value isn't a string, an error is produced. If the expression is SQL NULL
, the function returns SQL NULL
.
Return type
STRING
Examples
SELECT STRING(JSON '"purple"') AS color;
/*--------*
| color |
+--------+
| purple |
*--------*/
SELECT STRING(JSON_QUERY(JSON '{"name": "sky", "color": "blue"}', "$.color")) AS color;
/*-------*
| color |
+-------+
| blue |
*-------*/
The following examples show how invalid requests are handled:
-- An error is thrown if the JSON isn't of type string.
SELECT STRING(JSON '123') AS result; -- Throws an error
SELECT STRING(JSON 'null') AS result; -- Throws an error
SELECT SAFE.STRING(JSON '123') AS result; -- Returns a SQL NULL
TO_JSON
TO_JSON(
sql_value
[, stringify_wide_numbers => { TRUE | FALSE } ]
)
Description
Converts a SQL value to a JSON value.
Arguments:
sql_value
: The SQL value to convert to a JSON value. You can review the GoogleSQL data types that this function supports and their JSON encodings here.stringify_wide_numbers
: A named argument that's either TRUE
or FALSE
(default).
TRUE
, numeric values outside of the FLOAT64
type domain are encoded as strings.FALSE
(default), numeric values outside of the FLOAT64
type domain aren't encoded as strings, but are stored as JSON numbers. If a numerical value can't be stored in JSON without loss of precision, an error is thrown.The following numerical data types are affected by the stringify_wide_numbers
argument:
INT64
NUMERIC
BIGNUMERIC
If one of these numerical data types appears in a container data type such as an ARRAY
or STRUCT
, the stringify_wide_numbers
argument is applied to the numerical data types in the container data type.
Return type
JSON
Examples
In the following example, the query converts rows in a table to JSON values.
With CoordinatesTable AS (
(SELECT 1 AS id, [10, 20] AS coordinates) UNION ALL
(SELECT 2 AS id, [30, 40] AS coordinates) UNION ALL
(SELECT 3 AS id, [50, 60] AS coordinates))
SELECT TO_JSON(t) AS json_objects
FROM CoordinatesTable AS t;
/*--------------------------------*
| json_objects |
+--------------------------------+
| {"coordinates":[10,20],"id":1} |
| {"coordinates":[30,40],"id":2} |
| {"coordinates":[50,60],"id":3} |
*--------------------------------*/
In the following example, the query returns a large numerical value as a JSON string.
SELECT TO_JSON(9007199254740993, stringify_wide_numbers=>TRUE) as stringify_on;
/*--------------------*
| stringify_on |
+--------------------+
| "9007199254740993" |
*--------------------*/
In the following example, both queries return a large numerical value as a JSON number.
SELECT TO_JSON(9007199254740993, stringify_wide_numbers=>FALSE) as stringify_off;
SELECT TO_JSON(9007199254740993) as stringify_off;
/*------------------*
| stringify_off |
+------------------+
| 9007199254740993 |
*------------------*/
In the following example, only large numeric values are converted to JSON strings.
With T1 AS (
(SELECT 9007199254740993 AS id) UNION ALL
(SELECT 2 AS id))
SELECT TO_JSON(t, stringify_wide_numbers=>TRUE) AS json_objects
FROM T1 AS t;
/*---------------------------*
| json_objects |
+---------------------------+
| {"id":"9007199254740993"} |
| {"id":2} |
*---------------------------*/
In this example, the values 9007199254740993
(INT64
) and 2.1
(FLOAT64
) are converted to the common supertype FLOAT64
, which isn't affected by the stringify_wide_numbers
argument.
With T1 AS (
(SELECT 9007199254740993 AS id) UNION ALL
(SELECT 2.1 AS id))
SELECT TO_JSON(t, stringify_wide_numbers=>TRUE) AS json_objects
FROM T1 AS t;
/*------------------------------*
| json_objects |
+------------------------------+
| {"id":9.007199254740992e+15} |
| {"id":2.1} |
*------------------------------*/
TO_JSON_STRING
TO_JSON_STRING(value[, pretty_print])
Description
Converts a SQL value to a JSON-formatted STRING
value.
Arguments:
value
: A SQL value. You can review the GoogleSQL data types that this function supports and their JSON encodings here.pretty_print
: Optional boolean parameter. If pretty_print
is true
, the returned value is formatted for easy readability.Return type
A JSON-formatted STRING
Examples
The following query converts a STRUCT
value to a JSON-formatted string:
SELECT TO_JSON_STRING(STRUCT(1 AS id, [10,20] AS coordinates)) AS json_data
/*--------------------------------*
| json_data |
+--------------------------------+
| {"id":1,"coordinates":[10,20]} |
*--------------------------------*/
The following query converts a STRUCT
value to a JSON-formatted string that is easy to read:
SELECT TO_JSON_STRING(STRUCT(1 AS id, [10,20] AS coordinates), true) AS json_data
/*--------------------*
| json_data |
+--------------------+
| { |
| "id": 1, |
| "coordinates": [ |
| 10, |
| 20 |
| ] |
| } |
*--------------------*/
Differences between the JSON and JSON-formatted STRING types
Many JSON functions accept two input types:
JSON
typeSTRING
typeThe STRING
version of the extraction functions behaves differently than the JSON
version, mainly because JSON
type values are always validated whereas JSON-formatted STRING
type values aren't.
STRING
inputs
The following STRING
is invalid JSON because it's missing a trailing }
:
{"hello": "world"
The JSON function reads the input from the beginning and stops as soon as the field to extract is found, without reading the remainder of the input. A parsing error isn't produced.
With the JSON
type, however, JSON '{"hello": "world"'
returns a parsing error.
For example:
SELECT JSON_VALUE('{"hello": "world"', "$.hello") AS hello;
/*-------*
| hello |
+-------+
| world |
*-------*/
SELECT JSON_VALUE(JSON '{"hello": "world"', "$.hello") AS hello;
-- An error is returned: Invalid JSON literal: syntax error while parsing
-- object - unexpected end of input; expected '}'
In the following examples, duplicated keys aren't removed when using a JSON-formatted string. Similarly, keys order is preserved. For the JSON
type, JSON '{"key": 1, "key": 2}'
will result in JSON '{"key":1}'
during parsing.
SELECT JSON_QUERY('{"key": 1, "key": 2}', "$") AS string;
/*-------------------*
| string |
+-------------------+
| {"key":1,"key":2} |
*-------------------*/
SELECT JSON_QUERY(JSON '{"key": 1, "key": 2}', "$") AS json;
/*-----------*
| json |
+-----------+
| {"key":1} |
*-----------*/
JSON null
When using a JSON-formatted STRING
type in a JSON function, a JSON null
value is extracted as a SQL NULL
value.
When using a JSON type in a JSON function, a JSON null
value returns a JSON null
value.
WITH t AS (
SELECT '{"name": null}' AS json_string, JSON '{"name": null}' AS json)
SELECT JSON_QUERY(json_string, "$.name") AS name_string,
JSON_QUERY(json_string, "$.name") IS NULL AS name_string_is_null,
JSON_QUERY(json, "$.name") AS name_json,
JSON_QUERY(json, "$.name") IS NULL AS name_json_is_null
FROM t;
/*-------------+---------------------+-----------+-------------------*
| name_string | name_string_is_null | name_json | name_json_is_null |
+-------------+---------------------+-----------+-------------------+
| NULL | true | null | false |
*-------------+---------------------+-----------+-------------------*/
JSON encodings
You can encode a SQL value as a JSON value with the following functions:
TO_JSON_STRING
TO_JSON
JSON_SET
(uses TO_JSON
encoding)JSON_ARRAY
(uses TO_JSON
encoding)JSON_ARRAY_APPEND
(uses TO_JSON
encoding)JSON_ARRAY_INSERT
(uses TO_JSON
encoding)JSON_OBJECT
(uses TO_JSON
encoding)The following SQL to JSON encodings are supported:
From SQL To JSON Examples NULLnull
SQL input:NULL
null
BOOL boolean SQL input: TRUE
true
FALSE
false
(TO_JSON_STRING only)
number or string
Encoded as a number when the value is in the range of [-253, 253], which is the range of integers that can be represented losslessly as IEEE 754 double-precision floating point numbers. A value outside of this range is encoded as a string.
SQL input:9007199254740992
9007199254740992
9007199254740993
"9007199254740993"
(TO_JSON only)
number or string
If the stringify_wide_numbers
argument is TRUE
and the value is outside of the FLOAT64 type domain, the value is encoded as a string. If the value can't be stored in JSON without loss of precision, the function fails. Otherwise, the value is encoded as a number.
If the stringify_wide_numbers
isn't used or is FALSE
, numeric values outside of the `FLOAT64` type domain aren't encoded as strings, but are stored as JSON numbers. If a numerical value can't be stored in JSON without loss of precision, an error is thrown.
9007199254740992
9007199254740992
9007199254740993
9007199254740993
9007199254740992
9007199254740992
9007199254740993
"9007199254740993"
INTERVAL '10:20:30.52' HOUR TO SECOND
"PT10H20M30.52S"
INTERVAL 1 SECOND
"PT1S"
INTERVAL -25 MONTH
"P-2Y-1M"
INTERVAL '1 5:30' DAY TO MINUTE
"P1DT5H30M"
(TO_JSON_STRING only)
number or string
Encoded as a number when the value is in the range of [-253, 253] and has no fractional part. A value outside of this range is encoded as a string.
SQL input:-1
-1
0
0
9007199254740993
"9007199254740993"
123.56
"123.56"
(TO_JSON only)
number or string
If the stringify_wide_numbers
argument is TRUE
and the value is outside of the FLOAT64 type domain, it's encoded as a string. Otherwise, it's encoded as a number.
-1
-1
0
0
9007199254740993
9007199254740993
123.56
123.56
9007199254740993
"9007199254740993"
123.56
123.56
number or string
+/-inf
and NaN
are encoded as Infinity
, -Infinity
, and NaN
. Otherwise, this value is encoded as a number.
1.0
1
9007199254740993
9007199254740993
"+inf"
"Infinity"
"-inf"
"-Infinity"
"NaN"
"NaN"
string
Encoded as a string, escaped according to the JSON standard. Specifically, "
, \,
and the control characters from U+0000
to U+001F
are escaped.
"abc"
"abc"
"\"abc\""
"\"abc\""
string
Uses RFC 4648 Base64 data encoding.
SQL input:b"Google"
"R29vZ2xl"
DATE '2017-03-06'
"2017-03-06"
string
Encoded as ISO 8601 date and time, where T separates the date and time and Z (Zulu/UTC) represents the time zone.
SQL input:TIMESTAMP '2017-03-06 12:34:56.789012'
"2017-03-06T12:34:56.789012Z"
string
Encoded as ISO 8601 date and time, where T separates the date and time.
SQL input:DATETIME '2017-03-06 12:34:56.789012'
"2017-03-06T12:34:56.789012"
string
Encoded as ISO 8601 time.
SQL input:TIME '12:34:56.789012'
"12:34:56.789012"
data of the input JSON
SQL input:JSON '{"item": "pen", "price": 10}'
{"item":"pen", "price":10}
[1, 2, 3]
[1, 2, 3]
array
Can contain zero or more elements.
SQL input:["red", "blue", "green"]
["red","blue","green"]
[1, 2, 3]
[1,2,3]
object
The object can contain zero or more key-value pairs. Each value is formatted according to its type.
For TO_JSON
, a field is included in the output string and any duplicates of this field are omitted. For TO_JSON_STRING
, a field and any duplicates of this field are included in the output string.
Anonymous fields are represented with ""
.
Invalid UTF-8 field names might result in unparseable JSON. String values are escaped according to the JSON standard. Specifically, "
, \,
and the control characters from U+0000
to U+001F
are escaped.
STRUCT(12 AS purchases, TRUE AS inStock)
{"inStock": true,"purchases":12}
range
Encoded as an object with a start
and end
value. Any unbounded part of the range is represented as null
.
RANGE<DATE> '[2024-07-24, 2024-07-25)'
{"start":"2024-07-24","end":"2024-07-25"}
RANGE<DATETIME> '[2024-07-24 10:00:00, UNBOUNDED)'
{"start":"2024-07-24T10:00:00","end":null}
With the JSONPath format, you can identify the values you want to obtain from a JSON-formatted string.
If a key in a JSON functions contains a JSON format operator, refer to each JSON function for how to escape them.
A JSON function returns NULL
if the JSONPath format doesn't match a value in a JSON-formatted string. If the selected value for a scalar function isn't scalar, such as an object or an array, the function returns NULL
. If the JSONPath format is invalid, an error is produced.
The JSONPath format supports these operators:
Operator Description Examples$
Root object or element. The JSONPath format must start with this operator, which refers to the outermost level of the JSON-formatted string.
JSON-formatted string:'{"class" : {"students" : [{"name" : "Jane"}]}}'
JSON path:"$"
JSON result:{"class":{"students":[{"name":"Jane"}]}}
.
Child operator. You can identify child values using dot-notation.
JSON-formatted string:'{"class" : {"students" : [{"name" : "Jane"}]}}'
JSON path:"$.class.students"
JSON result:[{"name":"Jane"}]
[]
Subscript operator. If the object is a JSON array, you can use brackets to specify the array index.
JSON-formatted string:'{"class" : {"students" : [{"name" : "Jane"}]}}'
JSON path:"$.class.students[0]"
JSON result:{"name":"Jane"}
[][]
[][][]...
Child subscript operator. If the object is a JSON array within an array, you can use as many additional brackets as you need to specify the child array index.
JSON-formatted string:'{"a": [["b", "c"], "d"], "e":"f"}'
JSON path:"$.a[0][1]"
JSON result:"c"
Preview
This product or feature is subject to the "Pre-GA Offerings Terms" in the General Service Terms section of the Service Specific Terms. Pre-GA products and features are available "as is" and might have limited support. For more information, see the launch stage descriptions.
Note: To provide feedback or request support for this feature, send an email to bigquery-sql-preview-support@google.com.Some JSON functions that take a JSONPath let you specify a mode that indicates how the JSONPath matches the JSON data structure. For example, the JSONPath could be lax $.class.students
. The following modes are supported:
strict
(default) The JSONPath must structurally match the JSON data "$.class.students"
lax
Implicitly adapts the path to the structure of the JSON data. If the JSONPath doesn't exactly match the JSON data, then the following rules apply:
"lax $.class.students"
lax recursive
In addition to lax
behavior, JSONPath unwraps consecutive arrays until a non-array type is encountered. "lax recursive $.class.students"
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-07 UTC."],[[["GoogleSQL for BigQuery offers a range of functions to handle JSON data, including extraction, conversion, construction, modification, and access."],["The JSON functions are grouped into categories like Standard Extractors, Legacy Extractors, Lax Converters, Converters, Other Converters, Constructors, Mutators, and Accessors, to provide different functionalities."],["Functions like `JSON_ARRAY`, `JSON_OBJECT`, `JSON_SET`, `JSON_ARRAY_APPEND`, and `JSON_ARRAY_INSERT` enable the creation and modification of JSON structures."],["Functions such as `JSON_QUERY`, `JSON_VALUE`, `JSON_EXTRACT`, `JSON_EXTRACT_SCALAR` extract specific JSON data, whereas `LAX_BOOL`, `LAX_FLOAT64`, and `LAX_INT64` convert JSON values to SQL types."],["`TO_JSON` and `TO_JSON_STRING` convert SQL data to JSON format, with detailed encodings for different SQL types, as well as the functions `PARSE_JSON` and `STRING`, which handle the inverse."]]],[]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4