A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://brilliant.org/wiki/double-factorials-and-multifactorials/ below:

Double Factorials and Multifactorials | Brilliant Math & Science Wiki

Sravanth C.

,

Ashish Menon

,

Pi Han Goh

, and

contributed

For any non-negative integer \(n,\) we find that

\[\dfrac{n!}{n!!}=(n-1)!! ~~\text{ or }~~ n!=(n-1)!!×n!!.\]

We have the following 2 cases:

Combining both cases, we find that for any non-negative integer \(n\), \[\dfrac{n!}{n!!}=(n-1)!!. \ _\square\]

Suppose that \(n!!\) is defined as follows:

\[ n!! = \begin{cases} n \times (n-2) \times \cdots \times 5 \times 3 \times 1 &\text{if } n \text{ is odd}; \\ n \times (n-2) \times \cdots \times 6 \times 4 \times 2 &\text{if } n \text{ is even}; \\ 1 &\text{if } n = 0, - 1. \\ \end{cases} \]

Then what is

\[\color{red}{\dfrac{9!}{6!!}} \div \color{green}{\dfrac{9!!}{6!}}?\]

The correct answer is: 5760

For any non-negative integer \(n,\) we find that

\[\dfrac{(2n+1)!}{(2n)!!}=(2n+1)!!.\]

Here, there is no need to consider two separate cases because it makes no difference whether \(n\) is odd or even.

We can expand the LHS as

\[\dfrac{(2n+1)\times (2n)\times (2n-1)\times \cdots \times 3\times 2\times 1}{(2n)\times (2n-2)\times (2n-4)\times \cdots \times 4\times 2}.\]

Since all the even numbers \(2n, 2n-2, 2n-4, \ldots, 4, 2\) get canceled, we are left with the equation

\[\dfrac{(2n+1)!}{(2n)!!}=(2n+1)!!. \ _\square\]

Evaluate \(\frac {9!}{9!!}\).

Since \(\frac {n!}{n!!}=(n-1)!!\), substituting the values, we get

\[\begin{align} \dfrac{9!}{9!!}&=(9-1)!!\\ &=8!!\\ &=8×6×4×2\\ &=384. \ _\square \end{align}\]

Evaluate \(\frac {(3!)!}{3!!}\).

We have

\[\begin{align} \dfrac {(3!)!}{3!!} &=\dfrac {(3×2×1)!}{3×1}\\ &=\dfrac {6!}{3}\\ &=\dfrac {6×5×4×3×2×1}{3}\\ &=\dfrac {720}{3}\\ &=240. \ _\square \end{align}\]

\[\Large{\color{green}{\dfrac{9!}{8!!}}} \div {\color{orange}{\dfrac{7!}{6!!}}} = \, ? \]

Notation:

\[ n!! = \begin{cases} n \times (n-2) \times \cdots \times 5 \times 3 \times 1 && \text{if } n \text{ is odd;} \\ n \times (n-2) \times \cdots \times 6 \times 4 \times 2 && \text{if } n \text{ is even;} \\ 1 && \text{if } n = 0, - 1. \\ \end{cases} \]

Try the first part here!

The correct answer is: 9

For any non-negative integer \(n\) we find that

\[\dfrac{(2n-1)!}{(2n-2)!!}=(2n-1)!!.\]

Again here, there is no need to consider two separate cases. We can expand the LHS as

\[\dfrac{(2n-1)\times (2n-2)\times (2n-3)\times \cdots \times 3\times 2\times 1}{(2n-2)\times (2n-4)\times \cdots \times 4\times 2}.\]

Since all the even numbers \(2n-2, 2n-4, \ldots , 4, 2\) get canceled, we are left with the equation

\[\dfrac{(2n-1)!}{(2n-2)!!}=(2n-1)!!. \ _\square\]

Evaluate \(\frac{9!}{8!!}\).

We have

\[ \begin{align}
\dfrac { 9! } { 8!!} &= \dfrac{ (2 \times 5 - 1 ) ! } { (2 \times 5 - 2 ) !! } \\ &= (2 \times 5 - 1 )!! \\ &= 9 !! \\ &= 9 \times 7 \times 5 \times 3 \times 1 \\ &= 945. \ _\square \end{align} \]


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4