Nexmark is a suite of pipelines inspired by the ‘continuous data stream’ queries in Nexmark research paper
These are multiple queries over a three entities model representing on online auction system:
The queries exercise many aspects of Beam model:
We have augmented the original queries with five more:
Here are some of the knobs of the benchmark workload (see NexmarkConfiguration.java).
These configuration items can be passed to the launch command line.
Events generation (defaults)Here is an example output of the Nexmark benchmark run in streaming mode with the SMOKE suite on the (local) direct runner:
Performance: Conf Runtime(sec) Events(/sec) Results 0000 5,5 18138,9 100000 0001 4,2 23657,4 92000 0002 2,2 45683,0 351 0003 3,9 25348,5 444 0004 1,6 6207,3 40 0005 5,0 20173,5 12 0006 0,9 11376,6 401 0007 121,4 823,5 1 0008 2,5 40273,9 6000 0009 0,9 10695,2 298 0010 4,0 25025,0 1 0011 4,4 22655,2 1919 0012 3,5 28208,7 1919Benchmark launch configuration
The Nexmark launcher accepts the --runner
argument as usual for programs that use Beam PipelineOptions to manage their command line arguments. In addition to this, the necessary dependencies must be configured.
When running via Gradle, the following two parameters control the execution:
-P nexmark.args
The command line to pass to the Nexmark main program.
-P nexmark.runner
The Gradle project name of the runner, such as ":runners:direct-java" or
":runners:flink:1.13. The project names can be found in the root
`settings.gradle.kts`.
Test data is deterministically synthesized on demand. The test data may be synthesized in the same pipeline as the query itself, or may be published to Pub/Sub or Kafka.
The query results may be:
Decide if batch or streaming:
--streaming=true
Number of events generators:
--numEventGenerators=4
Queries can be run by their name or by their number (number is still there for backward compatibility, only the queries 0 to 12 have a number)
Run query N:
--query=N
Run query called PASSTHROUGH:
--query=PASSTHROUGH
Available Suites
The suite to run can be chosen using this configuration parameter:
--suite=SUITE
Available suites are:
--manageResources=false --monitorJobs=true \
--enforceEncodability=false --enforceImmutability=false
--project=<your project> \
--zone=<your zone> \
--workerMachineType=n1-highmem-8 \
--stagingLocation=gs://<a gs path for staging> \
--runner=DataflowRunner \
--tempLocation=gs://<a gs path for temporary files> \
--filesToStage=target/beam-sdks-java-nexmark-2.67.0.jar
Direct runner specific configuration
--manageResources=false --monitorJobs=true \
--enforceEncodability=false --enforceImmutability=false
Flink runner specific configuration
--manageResources=false --monitorJobs=true \
--flinkMaster=[local] --parallelism=#numcores
Spark runner specific configuration
--manageResources=false --monitorJobs=true \
--sparkMaster=local \
-Dspark.ui.enabled=false -DSPARK_LOCAL_IP=localhost -Dsun.io.serialization.extendedDebugInfo=true
Kafka source/sink configuration parameters
Set Kafka host/ip (for example, “localhost:9092”):
--bootstrapServers=<kafka host/ip>
Write results into Kafka topic:
--sinkType=KAFKA
Set topic name which will be used for benchmark results:
--kafkaResultsTopic=<topic name>
Write or/and read events into/from Kafka topic:
--sourceType=KAFKA
Set topic name which will be used for benchmark events:
--kafkaTopic=<topic name>
Current status
These tables contain statuses of the queries runs in the different runners. Google Cloud Dataflow status is yet to come.
Batch / Synthetic / Local Query Direct Spark Flink 0 ok ok ok 1 ok ok ok 2 ok ok ok 3 ok ok ok 4 ok ok ok 5 ok ok ok 6 ok ok ok 7 ok ok ok 8 ok ok ok 9 ok ok ok 10 ok ok ok 11 ok ok ok 12 ok ok ok BOUNDED_SIDE_INPUT_JOIN ok ok ok Streaming / Synthetic / Local Query Direct Spark Issue 18416 Flink 0 ok ok ok 1 ok ok ok 2 ok ok ok 3 ok Issue 18074, BEAM-3961 ok 4 ok ok ok 5 ok ok ok 6 ok ok ok 7 ok BEAM-2112 ok 8 ok ok ok 9 ok ok ok 10 ok ok ok 11 ok ok ok 12 ok ok ok BOUNDED_SIDE_INPUT_JOIN ok BEAM-2112 ok Batch / Synthetic / ClusterYet to come
Streaming / Synthetic / ClusterYet to come
Running Nexmark Running SMOKE suite on the DirectRunner (local)The DirectRunner is default, so it is not required to pass -Pnexmark.runner
. Here we do it for maximum clarity.
The direct runner does not have separate batch and streaming modes, but the Nexmark launch does.
These parameters leave on many of the DirectRunner’s extra safety checks so the SMOKE suite can make sure there is nothing broken in the Nexmark suite.
Batch Mode:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:direct-java" \
-Pnexmark.args="
--runner=DirectRunner
--streaming=false
--suite=SMOKE
--manageResources=false
--monitorJobs=true
--enforceEncodability=true
--enforceImmutability=true"
Streaming Mode:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:direct-java" \
-Pnexmark.args="
--runner=DirectRunner
--streaming=true
--suite=SMOKE
--manageResources=false
--monitorJobs=true
--enforceEncodability=true
--enforceImmutability=true"
Running SMOKE suite on the SparkRunner (local)
The SparkRunner is special-cased in the Nexmark gradle launch. The task will provide the version of Spark that the SparkRunner is built against, and configure logging.
Batch Mode:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:spark:3" \
-Pnexmark.args="
--runner=SparkRunner
--suite=SMOKE
--streamTimeout=60
--streaming=false
--manageResources=false
--monitorJobs=true"
Streaming Mode:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:spark:3" \
-Pnexmark.args="
--runner=SparkRunner
--suite=SMOKE
--streamTimeout=60
--streaming=true
--manageResources=false
--monitorJobs=true"
Running SMOKE suite on the FlinkRunner (local)
Batch Mode:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:flink:1.13" \
-Pnexmark.args="
--runner=FlinkRunner
--suite=SMOKE
--streamTimeout=60
--streaming=false
--manageResources=false
--monitorJobs=true
--flinkMaster=[local]"
Streaming Mode:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:flink:1.13" \
-Pnexmark.args="
--runner=FlinkRunner
--suite=SMOKE
--streamTimeout=60
--streaming=true
--manageResources=false
--monitorJobs=true
--flinkMaster=[local]"
Running SMOKE suite on Google Cloud Dataflow
Set these up first so the below command is valid
PROJECT=<your project>
ZONE=<your zone>
STAGING_LOCATION=gs://<a GCS path for staging>
PUBSUB_TOPCI=<existing pubsub topic>
Launch:
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:google-cloud-dataflow-java" \
-Pnexmark.args="
--runner=DataflowRunner
--suite=SMOKE
--streamTimeout=60
--streaming=true
--manageResources=false
--monitorJobs=true
--project=${PROJECT}
--zone=${ZONE}
--workerMachineType=n1-highmem-8
--stagingLocation=${STAGING_LOCATION}
--sourceType=PUBSUB
--pubSubMode=PUBLISH_ONLY
--pubsubTopic=${PUBSUB_TOPIC}
--resourceNameMode=VERBATIM
--manageResources=false
--numEventGenerators=64
--numWorkers=16
--maxNumWorkers=16
--firstEventRate=100000
--nextEventRate=100000
--ratePeriodSec=3600
--isRateLimited=true
--avgPersonByteSize=500
--avgAuctionByteSize=500
--avgBidByteSize=500
--probDelayedEvent=0.000001
--occasionalDelaySec=3600
--numEvents=0
--useWallclockEventTime=true
--usePubsubPublishTime=true
--experiments=enable_custom_pubsub_sink"
Running query 0 on a Spark cluster with Apache Hadoop YARN
Building package:
./gradlew :sdks:java:testing:nexmark:assemble
Submit to the cluster:
spark-submit \
--class org.apache.beam.sdk.nexmark.Main \
--master yarn-client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
sdks/java/testing/nexmark/build/libs/beam-sdks-java-nexmark-2.67.0-spark.jar \
--runner=SparkRunner \
--query=0 \
--streamTimeout=60 \
--streaming=false \
--manageResources=false \
--monitorJobs=true"
Nexmark dashboards
Below dashboards are used as a CI mechanism to detect no-regression on the Beam components. They are not supposed to be benchmark comparison of the runners or engines. Especially because:
At each commit on master, Nexmark suites are run and plots are created on the graphs. All metrics dashboards are hosted at metrics.beam.apache.org.
There are 2 kinds of dashboards:
There are dashboards for these runners (others to come):
Each dashboard contains:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4