Create a pyarrow.Table from a Python data structure or sequence of arrays.
dict
, list
, pandas.DataFrame
, Arrow-compatible table
A mapping of strings to Arrays or Python lists, a list of arrays or chunked arrays, a pandas DataFame, or any tabular object implementing the Arrow PyCapsule Protocol (has an __arrow_c_array__
, __arrow_c_device_array__
or __arrow_c_stream__
method).
list
, default None
Column names if list of arrays passed as data. Mutually exclusive with âschemaâ argument.
Schema
, default None
The expected schema of the Arrow Table. If not passed, will be inferred from the data. Mutually exclusive with ânamesâ argument. If passed, the output will have exactly this schema (raising an error when columns are not found in the data and ignoring additional data not specified in the schema, when data is a dict or DataFrame).
dict
or Mapping, default None
Optional metadata for the schema (if schema not passed).
int
, default None
For pandas.DataFrame inputs: if greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows pyarrow.cpu_count()
(may use up to system CPU count threads).
Table
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"]
Construct a Table from a python dictionary:
>>> pa.table({"n_legs": n_legs, "animals": animals}) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
Construct a Table from arrays:
>>> pa.table([n_legs, animals], names=names) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
Construct a Table from arrays with metadata:
>>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.table([n_legs, animals], names=names, metadata = my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'
Construct a Table from pandas DataFrame:
>>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.table(df) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,2019,2021]] n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
Construct a Table from pandas DataFrame with pyarrow schema:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.table(df, my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal' pandas: '{"index_columns": [], "column_indexes": [{"name": null, ...
Construct a Table from chunked arrays:
>>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> animals = pa.chunked_array([["Flamingo", "Parrot", "Dog"], ["Horse", "Brittle stars", "Centipede"]]) >>> table = pa.table([n_legs, animals], names=names) >>> table pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,2,4],[4,5,100]] animals: [["Flamingo","Parrot","Dog"],["Horse","Brittle stars","Centipede"]]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4