A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://arrow.apache.org/docs/python/generated/pyarrow.schema.html below:

pyarrow.schema — Apache Arrow v21.0.0

pyarrow.schema#
pyarrow.schema(fields, metadata=None)#

Construct pyarrow.Schema from collection of fields.

Parameters:
fieldsiterable of Fields or tuples, or mapping of strings to DataTypes

Can also pass an object that implements the Arrow PyCapsule Protocol for schemas (has an __arrow_c_schema__ method).

metadatadict, default None

Keys and values must be coercible to bytes.

Returns:
schemapyarrow.Schema

Examples

Create a Schema from iterable of tuples:

>>> import pyarrow as pa
>>> pa.schema([
...     ('some_int', pa.int32()),
...     ('some_string', pa.string()),
...     pa.field('some_required_string', pa.string(), nullable=False)
... ])
some_int: int32
some_string: string
some_required_string: string not null

Create a Schema from iterable of Fields:

>>> pa.schema([
...     pa.field('some_int', pa.int32()),
...     pa.field('some_string', pa.string())
... ])
some_int: int32
some_string: string

DataTypes can also be passed as strings. The following is equivalent to the above example:

>>> pa.schema([
...     pa.field('some_int', "int32"),
...     pa.field('some_string', "string")
... ])
some_int: int32
some_string: string

Or more concisely:

>>> pa.schema([
...     ('some_int', "int32"),
...     ('some_string', "string")
... ])
some_int: int32
some_string: string

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4