Bases: _Weakrefable
A n-dimensional array a.k.a Tensor.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) <pyarrow.Tensor> type: int32 shape: (2, 3) strides: (12, 4)
Methods
Attributes
Returns the name of the i-th tensor dimension.
int
The physical index of the tensor dimension.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_name(0) 'dim1' >>> tensor.dim_name(1) 'dim2'
Names of this tensor dimensions.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.dim_names ['dim1', 'dim2']
Return true if the tensors contains exactly equal data.
Tensor
The other tensor to compare for equality.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> y = np.array([[2, 2, 4], [4, 5, 10]], np.int32) >>> tensor2 = pa.Tensor.from_numpy(y, dim_names=["a","b"]) >>> tensor.equals(tensor) True >>> tensor.equals(tensor2) False
Create a Tensor from a numpy array.
numpy.ndarray
The source numpy array
list
, optional
Names of each dimension of the Tensor.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) <pyarrow.Tensor> type: int32 shape: (2, 3) strides: (12, 4)
Is this tensor contiguous in memory.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_contiguous True
Is this tensor mutable or immutable.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.is_mutable True
The dimension (n) of this tensor.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.ndim 2
The shape of this tensor.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.shape (2, 3)
The size of this tensor.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.size 6
Strides of this tensor.
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.strides (12, 4)
Convert arrow::Tensor to numpy.ndarray with zero copy
Examples
>>> import pyarrow as pa >>> import numpy as np >>> x = np.array([[2, 2, 4], [4, 5, 100]], np.int32) >>> tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"]) >>> tensor.to_numpy() array([[ 2, 2, 4], [ 4, 5, 100]], dtype=int32)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4