Bases: DataType
Concrete base class for extension types.
Methods
Attributes
The bit width of the extension type.
The byte width of the extension type.
Return true if type is equivalent to passed value.
DataType
or str
convertible
to DataType
Whether nested Field metadata equality should be checked as well.
Examples
>>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) True
The extension type name.
int
pyarrow.Field
If True, the number of expected buffers is only lower-bounded by num_buffers.
Examples
>>> import pyarrow as pa >>> pa.int64().has_variadic_buffers False >>> pa.string_view().has_variadic_buffers True
Number of data buffers required to construct Array type excluding children.
Examples
>>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3
The number of child fields.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list<item: string>) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2
The underlying storage type.
Return the equivalent NumPy / Pandas dtype.
Examples
>>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() <class 'numpy.int64'>
Wrap the given storage array as an extension array.
Array
or ChunkedArray
Array
or ChunkedArray
Extension array wrapping the storage array
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4