A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://api-docs.databricks.com/scala/spark/latest/org/apache/spark/sql/Dataset.html below:

Databricks Scala Spark API - org.apache.spark.sql.Dataset

class Dataset[T] extends Serializable

 

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. Dataset
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
Value Members
  1.  final def !=(arg0: Any): Boolean
  2.  final def ##(): Int
  3.  final def ==(arg0: Any): Boolean
  4.  def agg(expr: Column, exprs: Column*): DataFrame
  5.  def agg(exprs: Map[String, String]): DataFrame
  6.  def agg(exprs: Map[String, String]): DataFrame
  7.  def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame
  8.  def alias(alias: Symbol): Dataset[T]
  9.  def alias(alias: String): Dataset[T]
  10.  def apply(colName: String): Column
  11.  def as(alias: Symbol): Dataset[T]
  12.  def as(alias: String): Dataset[T]
  13.  def as(schema: StructType): DataFrame
  14.  def as[U](implicit arg0: Encoder[U]): Dataset[U]
  15.  final def asInstanceOf[T0]: T0
  16.  def cache(): Dataset.this.type
  17.  def checkpoint(eager: Boolean): Dataset[T]
  18.  def checkpoint(): Dataset[T]
  19.  def clone(): AnyRef
  20.  def coalesce(numPartitions: Int): Dataset[T]
  21.  def col(colName: String): Column
  22.  def colRegex(colName: String): Column
  23.  def collect(): Array[T]
  24.  def collectAsList(): List[T]
  25.  def columns: Array[String]
  26.  def count(): Long
  27.  def createGlobalTempView(viewName: String): Unit
  28.  def createOrReplaceGlobalTempView(viewName: String): Unit
  29.  def createOrReplaceTempView(viewName: String): Unit
  30.  def createTempView(viewName: String): Unit
  31.  def crossJoin(right: Dataset[_]): DataFrame
  32.  def cube(col1: String, cols: String*): RelationalGroupedDataset
  33.  def cube(cols: Column*): RelationalGroupedDataset
  34.  def describe(cols: String*): DataFrame
  35.  def distinct(): Dataset[T]
  36.  def drop(col: Column): DataFrame
  37.  def drop(colNames: String*): DataFrame
  38.  def drop(colName: String): DataFrame
  39.  def dropDuplicates(col1: String, cols: String*): Dataset[T]
  40.  def dropDuplicates(colNames: Array[String]): Dataset[T]
  41.  def dropDuplicates(colNames: Seq[String]): Dataset[T]
  42.  def dropDuplicates(): Dataset[T]
  43.  def dtypes: Array[(String, String)]
  44.  val encoder: Encoder[T]
  45.  final def eq(arg0: AnyRef): Boolean
  46.  def equals(arg0: Any): Boolean
  47.  def except(other: Dataset[T]): Dataset[T]
  48.  def exceptAll(other: Dataset[T]): Dataset[T]
  49.  def explain(): Unit
  50.  def explain(extended: Boolean): Unit
  51.  def explain(mode: String): Unit
  52.  def filter(func: FilterFunction[T]): Dataset[T]
  53.  def filter(func: (T) ⇒ Boolean): Dataset[T]
  54.  def filter(conditionExpr: String): Dataset[T]
  55.  def filter(condition: Column): Dataset[T]
  56.  def finalize(): Unit
  57.  def first(): T
  58.  def flatMap[U](f: FlatMapFunction[T, U], encoder: Encoder[U]): Dataset[U]
  59.  def flatMap[U](func: (T) ⇒ TraversableOnce[U])(implicit arg0: Encoder[U]): Dataset[U]
  60.  def foreach(func: ForeachFunction[T]): Unit
  61.  def foreach(f: (T) ⇒ Unit): Unit
  62.  def foreachPartition(func: ForeachPartitionFunction[T]): Unit
  63.  def foreachPartition(f: (Iterator[T]) ⇒ Unit): Unit
  64.  final def getClass(): Class[_]
  65.  def groupBy(col1: String, cols: String*): RelationalGroupedDataset
  66.  def groupBy(cols: Column*): RelationalGroupedDataset
  67.  def groupByKey[K](func: MapFunction[T, K], encoder: Encoder[K]): KeyValueGroupedDataset[K, T]
  68.  def groupByKey[K](func: (T) ⇒ K)(implicit arg0: Encoder[K]): KeyValueGroupedDataset[K, T]
  69.  def hashCode(): Int
  70.  def head(): T
  71.  def head(n: Int): Array[T]
  72.  def hint(name: String, parameters: Any*): Dataset[T]
  73.  def inputFiles: Array[String]
  74.  def intersect(other: Dataset[T]): Dataset[T]
  75.  def intersectAll(other: Dataset[T]): Dataset[T]
  76.  def isEmpty: Boolean
  77.  final def isInstanceOf[T0]: Boolean
  78.  def isLocal: Boolean
  79.  def isStreaming: Boolean
  80.  def javaRDD: JavaRDD[T]
  81.  def join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame
  82.  def join(right: Dataset[_], joinExprs: Column): DataFrame
  83.  def join(right: Dataset[_], usingColumns: Seq[String], joinType: String): DataFrame
  84.  def join(right: Dataset[_], usingColumns: Array[String], joinType: String): DataFrame
  85.  def join(right: Dataset[_], usingColumn: String, joinType: String): DataFrame
  86.  def join(right: Dataset[_], usingColumns: Seq[String]): DataFrame
  87.  def join(right: Dataset[_], usingColumns: Array[String]): DataFrame
  88.  def join(right: Dataset[_], usingColumn: String): DataFrame
  89.  def join(right: Dataset[_]): DataFrame
  90.  def joinWith[U](other: Dataset[U], condition: Column): Dataset[(T, U)]
  91.  def joinWith[U](other: Dataset[U], condition: Column, joinType: String): Dataset[(T, U)]
  92.  def limit(n: Int): Dataset[T]
  93.  def localCheckpoint(eager: Boolean): Dataset[T]
  94.  def localCheckpoint(): Dataset[T]
  95.  def map[U](func: MapFunction[T, U], encoder: Encoder[U]): Dataset[U]
  96.  def map[U](func: (T) ⇒ U)(implicit arg0: Encoder[U]): Dataset[U]
  97.  def mapPartitions[U](f: MapPartitionsFunction[T, U], encoder: Encoder[U]): Dataset[U]
  98.  def mapPartitions[U](func: (Iterator[T]) ⇒ Iterator[U])(implicit arg0: Encoder[U]): Dataset[U]
  99.  def na: DataFrameNaFunctions
  100.  final def ne(arg0: AnyRef): Boolean
  101.  final def notify(): Unit
  102.  final def notifyAll(): Unit
  103.  def observe(observation: Observation, expr: Column, exprs: Column*): Dataset[T]
  104.  def observe(name: String, expr: Column, exprs: Column*): Dataset[T]
  105.  def offset(n: Int): Dataset[T]
  106.  def orderBy(sortExprs: Column*): Dataset[T]
  107.  def orderBy(sortCol: String, sortCols: String*): Dataset[T]
  108.  def persist(newLevel: StorageLevel): Dataset.this.type
  109.  def persist(): Dataset.this.type
  110.  def printSchema(level: Int): Unit
  111.  def printSchema(): Unit
  112.  val queryExecution: QueryExecution
  113.  def randomSplit(weights: Array[Double]): Array[Dataset[T]]
  114.  def randomSplit(weights: Array[Double], seed: Long): Array[Dataset[T]]
  115.  def randomSplitAsList(weights: Array[Double], seed: Long): List[Dataset[T]]
  116.  lazy val rdd: RDD[T]
  117.  def reduce(func: ReduceFunction[T]): T
  118.  def reduce(func: (T, T) ⇒ T): T
  119.  def repartition(partitionExprs: Column*): Dataset[T]
  120.  def repartition(numPartitions: Int, partitionExprs: Column*): Dataset[T]
  121.  def repartition(numPartitions: Int): Dataset[T]
  122.  def repartitionByRange(partitionExprs: Column*): Dataset[T]
  123.  def repartitionByRange(numPartitions: Int, partitionExprs: Column*): Dataset[T]
  124.  def rollup(col1: String, cols: String*): RelationalGroupedDataset
  125.  def rollup(cols: Column*): RelationalGroupedDataset
  126.  def sameSemantics(other: Dataset[T]): Boolean
  127.  def sample(withReplacement: Boolean, fraction: Double): Dataset[T]
  128.  def sample(withReplacement: Boolean, fraction: Double, seed: Long): Dataset[T]
  129.  def sample(fraction: Double): Dataset[T]
  130.  def sample(fraction: Double, seed: Long): Dataset[T]
  131.  def schema: StructType
  132.  def select[U1, U2, U3, U4, U5](c1: TypedColumn[T, U1], c2: TypedColumn[T, U2], c3: TypedColumn[T, U3], c4: TypedColumn[T, U4], c5: TypedColumn[T, U5]): Dataset[(U1, U2, U3, U4, U5)]
  133.  def select[U1, U2, U3, U4](c1: TypedColumn[T, U1], c2: TypedColumn[T, U2], c3: TypedColumn[T, U3], c4: TypedColumn[T, U4]): Dataset[(U1, U2, U3, U4)]
  134.  def select[U1, U2, U3](c1: TypedColumn[T, U1], c2: TypedColumn[T, U2], c3: TypedColumn[T, U3]): Dataset[(U1, U2, U3)]
  135.  def select[U1, U2](c1: TypedColumn[T, U1], c2: TypedColumn[T, U2]): Dataset[(U1, U2)]
  136.  def select[U1](c1: TypedColumn[T, U1]): Dataset[U1]
  137.  def select(col: String, cols: String*): DataFrame
  138.  def select(cols: Column*): DataFrame
  139.  def selectExpr(exprs: String*): DataFrame
  140.  def selectUntyped(columns: TypedColumn[_, _]*): Dataset[_]
  141.  def semanticHash(): Int
  142.  def show(numRows: Int, truncate: Int, vertical: Boolean): Unit
  143.  def show(numRows: Int, truncate: Int): Unit
  144.  def show(numRows: Int, truncate: Boolean): Unit
  145.  def show(truncate: Boolean): Unit
  146.  def show(): Unit
  147.  def show(numRows: Int): Unit
  148.  def sort(sortExprs: Column*): Dataset[T]
  149.  def sort(sortCol: String, sortCols: String*): Dataset[T]
  150.  def sortWithinPartitions(sortExprs: Column*): Dataset[T]
  151.  def sortWithinPartitions(sortCol: String, sortCols: String*): Dataset[T]
  152.  lazy val sparkSession: SparkSession
  153.  lazy val sqlContext: SQLContext
  154.  def stat: DataFrameStatFunctions
  155.  def storageLevel: StorageLevel
  156.  def summary(statistics: String*): DataFrame
  157.  final def synchronized[T0](arg0: ⇒ T0): T0
  158.  def tail(n: Int): Array[T]
  159.  def take(n: Int): Array[T]
  160.  def takeAsList(n: Int): List[T]
  161.  def toDF(colNames: String*): DataFrame
  162.  def toDF(): DataFrame
  163.  def toJSON: Dataset[String]
  164.  def toJavaRDD: JavaRDD[T]
  165.  def toLocalIterator(): Iterator[T]
  166.  def toString(): String
  167.  def transform[U](t: (Dataset[T]) ⇒ Dataset[U]): Dataset[U]
  168.  def union(other: Dataset[T]): Dataset[T]
  169.  def unionAll(other: Dataset[T]): Dataset[T]
  170.  def unionByName(other: Dataset[T], allowMissingColumns: Boolean): Dataset[T]
  171.  def unionByName(other: Dataset[T]): Dataset[T]
  172.  def unpersist(): Dataset.this.type
  173.  def unpersist(blocking: Boolean): Dataset.this.type
  174.  final def wait(): Unit
  175.  final def wait(arg0: Long, arg1: Int): Unit
  176.  final def wait(arg0: Long): Unit
  177.  def where(conditionExpr: String): Dataset[T]
  178.  def where(condition: Column): Dataset[T]
  179.  def withColumn(colName: String, col: Column): DataFrame
  180.  def withColumnRenamed(existingName: String, newName: String): DataFrame
  181.  def withColumns(colsMap: Map[String, Column]): DataFrame
  182.  def withColumns(colsMap: Map[String, Column]): DataFrame
  183.  def withMetadata(columnName: String, metadata: Metadata): DataFrame
  184.  def withWatermark(eventTime: String, delayThreshold: String): Dataset[T]
  185.  def write: DataFrameWriter[T]
  186.  def writeStream: DataStreamWriter[T]
  187.  def writeTo(table: String): DataFrameWriterV2[T]
Deprecated Value Members
  1.  def explode[A, B](inputColumn: String, outputColumn: String)(f: (A) ⇒ TraversableOnce[B])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[B]): DataFrame
  2.  def explode[A <: Product](input: Column*)(f: (Row) ⇒ TraversableOnce[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame
  3.  def registerTempTable(tableName: String): Unit

Inherited from Serializable

Inherited from Serializable

Inherited from Any

Actions

Basic Dataset functions

streaming

Typed transformations

Untyped transformations

Ungrouped


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4