pyspark.ml.tuning.
ParamGridBuilder
¶
Builder for a param grid used in grid search-based model selection.
Examples
>>> from pyspark.ml.classification import LogisticRegression >>> lr = LogisticRegression() >>> output = ParamGridBuilder() \ ... .baseOn({lr.labelCol: 'l'}) \ ... .baseOn([lr.predictionCol, 'p']) \ ... .addGrid(lr.regParam, [1.0, 2.0]) \ ... .addGrid(lr.maxIter, [1, 5]) \ ... .build() >>> expected = [ ... {lr.regParam: 1.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 2.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 1.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}, ... {lr.regParam: 2.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}] >>> len(output) == len(expected) True >>> all([m in expected for m in output]) True
Methods
addGrid
(param, values)
Sets the given parameters in this grid to fixed values.
baseOn
(*args)
Sets the given parameters in this grid to fixed values.
build
()
Builds and returns all combinations of parameters specified by the param grid.
Methods Documentation
addGrid
(param: pyspark.ml.param.Param[Any], values: List[Any]) → pyspark.ml.tuning.ParamGridBuilder¶
Sets the given parameters in this grid to fixed values.
param must be an instance of Param associated with an instance of Params (such as Estimator or Transformer).
baseOn
(*args: Union[ParamMap, Tuple[pyspark.ml.param.Param, Any]]) → ParamGridBuilder¶
Sets the given parameters in this grid to fixed values. Accepts either a parameter dictionary or a list of (parameter, value) pairs.
build
() → List[ParamMap]¶
Builds and returns all combinations of parameters specified by the param grid.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4