pyspark.ml.
Pipeline
(*, stages: Optional[List[PipelineStage]] = None)¶
A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of which is either an Estimator
or a Transformer
. When Pipeline.fit()
is called, the stages are executed in order. If a stage is an Estimator
, its Estimator.fit()
method will be called on the input dataset to fit a model. Then the model, which is a transformer, will be used to transform the dataset as the input to the next stage. If a stage is a Transformer
, its Transformer.transform()
method will be called to produce the dataset for the next stage. The fitted model from a Pipeline
is a PipelineModel
, which consists of fitted models and transformers, corresponding to the pipeline stages. If stages is an empty list, the pipeline acts as an identity transformer.
Methods
clear
(param)
Clears a param from the param map if it has been explicitly set.
copy
([extra])
Creates a copy of this instance.
explainParam
(param)
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit
(dataset[, params])
Fits a model to the input dataset with optional parameters.
fitMultiple
(dataset, paramMaps)
Fits a model to the input dataset for each param map in paramMaps.
getOrDefault
(param)
Gets the value of a param in the user-supplied param map or its default value.
getParam
(paramName)
Gets a param by its name.
Get pipeline stages.
hasDefault
(param)
Checks whether a param has a default value.
hasParam
(paramName)
Tests whether this instance contains a param with a given (string) name.
isDefined
(param)
Checks whether a param is explicitly set by user or has a default value.
isSet
(param)
Checks whether a param is explicitly set by user.
load
(path)
Reads an ML instance from the input path, a shortcut of read().load(path).
read
()
Returns an MLReader instance for this class.
save
(path)
Save this ML instance to the given path, a shortcut of âwrite().save(path)â.
set
(param, value)
Sets a parameter in the embedded param map.
setParams
(self, \*[, stages])
Sets params for Pipeline.
setStages
(value)
Set pipeline stages.
write
()
Returns an MLWriter instance for this ML instance.
Attributes
Methods Documentation
clear
(param: pyspark.ml.param.Param) → None¶
Clears a param from the param map if it has been explicitly set.
copy
(extra: Optional[ParamMap] = None) → Pipeline¶
Creates a copy of this instance.
extra parameters
Pipeline
new instance
explainParam
(param: Union[str, pyspark.ml.param.Param]) → str¶
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams
() → str¶
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
extra param values
merged param map
fit
(dataset: pyspark.sql.dataframe.DataFrame, params: Union[ParamMap, List[ParamMap], Tuple[ParamMap], None] = None) → Union[M, List[M]]¶
Fits a model to the input dataset with optional parameters.
pyspark.sql.DataFrame
input dataset.
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Transformer
or a list of Transformer
fitted model(s)
fitMultiple
(dataset: pyspark.sql.dataframe.DataFrame, paramMaps: Sequence[ParamMap]) → Iterator[Tuple[int, M]]¶
Fits a model to the input dataset for each param map in paramMaps.
pyspark.sql.DataFrame
input dataset.
collections.abc.Sequence
A Sequence of param maps.
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
getOrDefault
(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
getParam
(paramName: str) → pyspark.ml.param.Param¶
Gets a param by its name.
getStages
() → List[PipelineStage]¶
Get pipeline stages.
hasDefault
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
Checks whether a param has a default value.
hasParam
(paramName: str) → bool¶
Tests whether this instance contains a param with a given (string) name.
isDefined
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
Checks whether a param is explicitly set by user or has a default value.
isSet
(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶
Checks whether a param is explicitly set by user.
load
(path: str) → RL¶
Reads an ML instance from the input path, a shortcut of read().load(path).
read
() → pyspark.ml.pipeline.PipelineReader¶
Returns an MLReader instance for this class.
save
(path: str) → None¶
Save this ML instance to the given path, a shortcut of âwrite().save(path)â.
set
(param: pyspark.ml.param.Param, value: Any) → None¶
Sets a parameter in the embedded param map.
setParams
(self, \*, stages=None)¶
Sets params for Pipeline.
setStages
(value: List[PipelineStage]) → Pipeline¶
Set pipeline stages.
Pipeline
the pipeline instance
write
() → pyspark.ml.util.MLWriter¶
Returns an MLWriter instance for this ML instance.
Attributes Documentation
params
¶
Returns all params ordered by name. The default implementation uses dir()
to get all attributes of type Param
.
stages
: pyspark.ml.param.Param[List[PipelineStage]] = Param(parent='undefined', name='stages', doc='a list of pipeline stages')¶
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4