------------------------------------------------------------------------ -- The Agda standard library -- -- Equality of unary relations ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Unary.Relation.Binary.Equality where open import Level using (Level) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Structures using (IsEquivalence) open import Relation.Unary using (Pred; _≐_; _≐′_) open import Relation.Unary.Properties using (≐-refl; ≐-sym; ≐-trans; ≐′-refl; ≐′-sym; ≐′-trans) private variable a ℓ : Level A : Set a ≐-isEquivalence : IsEquivalence {A = Pred A ℓ} _≐_ ≐-isEquivalence = record { refl = ≐-refl ; sym = ≐-sym ; trans = ≐-trans } ≐′-isEquivalence : IsEquivalence {A = Pred A ℓ} _≐′_ ≐′-isEquivalence = record { refl = ≐′-refl ; sym = ≐′-sym ; trans = ≐′-trans } ≐-setoid : ∀ {a} (A : Set a) ℓ → Setoid _ _ ≐-setoid A ℓ = record { isEquivalence = ≐-isEquivalence {A = A} {ℓ} } ≐′-setoid : ∀ {a} (A : Set a) ℓ → Setoid _ _ ≐′-setoid A ℓ = record { isEquivalence = ≐′-isEquivalence {A = A} {ℓ} }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4