------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of polymorphic versions of standard definitions in -- Relation.Unary ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Unary.Polymorphic.Properties where open import Data.Unit.Polymorphic.Base using (tt) open import Level using (Level) open import Relation.Binary.Definitions hiding (Decidable; Universal; Empty) open import Relation.Nullary.Decidable.Core using (yes; no) open import Relation.Unary hiding (∅; U) open import Relation.Unary.Polymorphic using (∅; U) private variable a ℓ ℓ₁ ℓ₂ : Level A : Set a ------------------------------------------------------------------------ -- The empty set ∅? : Decidable {A = A} {ℓ} ∅ ∅? _ = no λ() ∅-Empty : Empty {A = A} {ℓ} ∅ ∅-Empty _ () ∁∅-Universal : Universal {A = A} {ℓ} (∁ ∅) ∁∅-Universal _ () ------------------------------------------------------------------------ -- The universe U? : Decidable {A = A} {ℓ} U U? _ = yes tt U-Universal : Universal {A = A} {ℓ} U U-Universal _ = _ ∁U-Empty : Empty {A = A} {ℓ} (∁ U) ∁U-Empty _ x∈∁U = x∈∁U _ ------------------------------------------------------------------------ -- Subset properties ∅-⊆ : (P : Pred A ℓ₁) → ∅ {ℓ = ℓ₂} ⊆ P ∅-⊆ _ () ⊆-U : (P : Pred A ℓ₁) → P ⊆ U {ℓ = ℓ₂} ⊆-U _ _ = _ ⊆-min : Min {A = Pred A ℓ₁} {B = Pred A ℓ₂} _⊆_ ∅ ⊆-min = ∅-⊆ ⊆-max : Max {A = Pred A ℓ₁} {B = Pred A ℓ₂} _⊆_ U ⊆-max = ⊆-U ∅-⊆′ : (P : Pred A ℓ₁) → ∅ {ℓ = ℓ₂} ⊆′ P ∅-⊆′ _ _ = λ () ⊆′-U : (P : Pred A ℓ₁) → P ⊆′ U {ℓ = ℓ₂} ⊆′-U _ _ _ = _ ⊆′-min : Min {A = Pred A ℓ₁} {B = Pred A ℓ₂} _⊆′_ ∅ ⊆′-min = ∅-⊆′ ⊆′-max : Max {A = Pred A ℓ₁} {B = Pred A ℓ₂} _⊆′_ U ⊆′-max = ⊆′-U
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4