------------------------------------------------------------------------ -- The Agda standard library -- -- Notation for freely adding extrema to any set ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Nullary.Construct.Add.Extrema where open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) open import Relation.Nullary.Construct.Add.Infimum as Infimum using (_₋) open import Relation.Nullary.Construct.Add.Supremum as Supremum using (_⁺) ------------------------------------------------------------------------ -- Definition _± : ∀ {a} → Set a → Set a A ± = A ₋ ⁺ pattern ⊥± = Supremum.[ Infimum.⊥₋ ] pattern [_] k = Supremum.[ Infimum.[ k ] ] pattern ⊤± = Supremum.⊤⁺ ------------------------------------------------------------------------ -- Properties [_]-injective : ∀ {a} {A : Set a} {k l : A} → [ k ] ≡ [ l ] → k ≡ l [_]-injective refl = refl
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4