------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by strict partial orders ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (StrictPartialOrder; Poset) module Relation.Binary.Properties.StrictPartialOrder {s₁ s₂ s₃} (SPO : StrictPartialOrder s₁ s₂ s₃) where import Relation.Binary.Construct.Flip.EqAndOrd as EqAndOrd using (strictPartialOrder) import Relation.Binary.Construct.StrictToNonStrict using (isPartialOrder) open StrictPartialOrder SPO ------------------------------------------------------------------------ -- The converse relation is also a strict partial order. >-strictPartialOrder : StrictPartialOrder s₁ s₂ s₃ >-strictPartialOrder = EqAndOrd.strictPartialOrder SPO open StrictPartialOrder >-strictPartialOrder public using () renaming ( _<_ to _>_ ; irrefl to >-irrefl ; trans to >-trans ; <-resp-≈ to >-resp-≈ ; isStrictPartialOrder to >-isStrictPartialOrder ) ------------------------------------------------------------------------ -- Strict partial orders can be converted to posets open Relation.Binary.Construct.StrictToNonStrict _≈_ _<_ poset : Poset _ _ _ poset = record { isPartialOrder = isPartialOrder isStrictPartialOrder } open Poset poset public
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4