------------------------------------------------------------------------ -- The Agda standard library -- -- Apartness properties ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core using (Rel) module Relation.Binary.Properties.ApartnessRelation {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_#_ : Rel A ℓ₂} where open import Function.Base using (_∘₂_) open import Relation.Binary.Definitions using (Reflexive) open import Relation.Binary.Consequences using (sym⇒¬-sym; cotrans⇒¬-trans) open import Relation.Binary.Structures using (IsEquivalence; IsApartnessRelation) open import Relation.Nullary.Negation using (¬_) ¬#-isEquivalence : Reflexive _≈_ → IsApartnessRelation _≈_ _#_ → IsEquivalence (¬_ ∘₂ _#_) ¬#-isEquivalence re apart = record { refl = irrefl re ; sym = λ {a} {b} → sym⇒¬-sym sym {a} {b} ; trans = cotrans⇒¬-trans cotrans } where open IsApartnessRelation apart
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4