A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Relation.Binary.Morphism.Definitions.html below:

Relation.Binary.Morphism.Definitions

Relation.Binary.Morphism.Definitions
------------------------------------------------------------------------
-- The Agda standard library
--
-- Basic definitions for morphisms between algebraic structures
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Core

module Relation.Binary.Morphism.Definitions
  {a} (A : Set a)     -- The domain of the morphism
  {b} (B : Set b)     -- The codomain of the morphism
  where

open import Level using (Level)

private
  variable
    ℓ₁ ℓ₂ : Level

------------------------------------------------------------------------
-- Morphism definition in Function.Core

open import Function.Core public
  using (Morphism)

------------------------------------------------------------------------
-- Basic definitions

Homomorphic₂ : Rel A ℓ₁  Rel B ℓ₂  (A  B)  Set _
Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ =  {x y}  x ∼₁ y   x  ∼₂  y 

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4