------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by bounded lattice ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Lattice module Relation.Binary.Lattice.Properties.BoundedLattice {c ℓ₁ ℓ₂} (L : BoundedLattice c ℓ₁ ℓ₂) where open import Data.Product.Base using (_,_) open import Relation.Binary.Bundles using (Setoid) open BoundedLattice L open import Algebra.Definitions _≈_ using (Zero; RightZero; LeftZero) open import Relation.Binary.Lattice.Properties.MeetSemilattice meetSemilattice using (y≤x⇒x∧y≈y; ∧-comm) open import Relation.Binary.Lattice.Properties.JoinSemilattice joinSemilattice using (x≤y⇒x∨y≈y; ∨-comm ) open Setoid setoid renaming (trans to ≈-trans) ∧-zeroʳ : RightZero ⊥ _∧_ ∧-zeroʳ x = y≤x⇒x∧y≈y (minimum x) ∧-zeroˡ : LeftZero ⊥ _∧_ ∧-zeroˡ x = ≈-trans (∧-comm ⊥ x) (∧-zeroʳ x) ∧-zero : Zero ⊥ _∧_ ∧-zero = ∧-zeroˡ , ∧-zeroʳ ∨-zeroʳ : RightZero ⊤ _∨_ ∨-zeroʳ x = x≤y⇒x∨y≈y (maximum x) ∨-zeroˡ : LeftZero ⊤ _∨_ ∨-zeroˡ x = ≈-trans (∨-comm ⊤ x) (∨-zeroʳ x) ∨-zero : Zero ⊤ _∨_ ∨-zero = ∨-zeroˡ , ∨-zeroʳ
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4