A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Relation.Binary.Lattice.Definitions.html below:

Relation.Binary.Lattice.Definitions

Relation.Binary.Lattice.Definitions
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions for order-theoretic lattices
------------------------------------------------------------------------

-- The contents of this module should be accessed via
-- `Relation.Binary.Lattice`.

{-# OPTIONS --cubical-compatible --safe #-}

module Relation.Binary.Lattice.Definitions where

open import Algebra.Core using (Op₁; Op₂)
open import Data.Product.Base using (_×_; _,_)
open import Function.Base using (flip)
open import Level using (Level)
open import Relation.Binary.Core using (Rel)

private
  variable
    a  : Level
    A : Set a

------------------------------------------------------------------------
-- Relationships between orders and operators

Supremum : Rel A   Op₂ A  Set _
Supremum _≤_ _∨_ =
   x y  x  (x  y) × y  (x  y) ×  z  x  z  y  z  (x  y)  z

Infimum : Rel A   Op₂ A  Set _
Infimum _≤_ = Supremum (flip _≤_)

Exponential : Rel A   Op₂ A  Op₂ A  Set _
Exponential _≤_ _∧_ _⇨_ =
   w x y  ((w  x)  y  w  (x  y)) × (w  (x  y)  (w  x)  y)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4