------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions for order-theoretic lattices ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Lattice`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Lattice.Definitions where open import Algebra.Core using (Op₁; Op₂) open import Data.Product.Base using (_×_; _,_) open import Function.Base using (flip) open import Level using (Level) open import Relation.Binary.Core using (Rel) private variable a ℓ : Level A : Set a ------------------------------------------------------------------------ -- Relationships between orders and operators Supremum : Rel A ℓ → Op₂ A → Set _ Supremum _≤_ _∨_ = ∀ x y → x ≤ (x ∨ y) × y ≤ (x ∨ y) × ∀ z → x ≤ z → y ≤ z → (x ∨ y) ≤ z Infimum : Rel A ℓ → Op₂ A → Set _ Infimum _≤_ = Supremum (flip _≤_) Exponential : Rel A ℓ → Op₂ A → Op₂ A → Set _ Exponential _≤_ _∧_ _⇨_ = ∀ w x y → ((w ∧ x) ≤ y → w ≤ (x ⇨ y)) × (w ≤ (x ⇨ y) → (w ∧ x) ≤ y)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4