------------------------------------------------------------------------ -- The Agda standard library -- -- Union of two binary relations ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Construct.Union where open import Data.Product.Base using (_,_; _×_; map; zip; <_,_>) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Function.Base using (_∘_) open import Level using (Level; _⊔_) open import Relation.Binary.Core using (REL; Rel; _⇒_) open import Relation.Binary.Definitions using (Reflexive; Total; Minimum; Maximum; Symmetric; Irreflexive; Decidable; _Respects_; _Respectsˡ_; _Respectsʳ_; _Respects₂_) open import Relation.Nullary.Decidable using (yes; no; _⊎-dec_) private variable a b ℓ ℓ₁ ℓ₂ ℓ₃ : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Definition infixr 6 _∪_ _∪_ : REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂) L ∪ R = λ i j → L i j ⊎ R i j ------------------------------------------------------------------------ -- Properties module _ (L : Rel A ℓ) (R : Rel A ℓ) where reflexive : Reflexive L ⊎ Reflexive R → Reflexive (L ∪ R) reflexive (inj₁ L-refl) = inj₁ L-refl reflexive (inj₂ R-refl) = inj₂ R-refl total : Total L ⊎ Total R → Total (L ∪ R) total (inj₁ L-total) x y = [ inj₁ ∘ inj₁ , inj₂ ∘ inj₁ ] (L-total x y) total (inj₂ R-total) x y = [ inj₁ ∘ inj₂ , inj₂ ∘ inj₂ ] (R-total x y) min : ∀ {⊤} → Minimum L ⊤ ⊎ Minimum R ⊤ → Minimum (L ∪ R) ⊤ min = [ inj₁ ∘_ , inj₂ ∘_ ] max : ∀ {⊥} → Maximum L ⊥ ⊎ Maximum R ⊥ → Maximum (L ∪ R) ⊥ max = [ inj₁ ∘_ , inj₂ ∘_ ] module _ {L : Rel A ℓ} {R : Rel A ℓ} where symmetric : Symmetric L → Symmetric R → Symmetric (L ∪ R) symmetric L-sym R-sym = [ inj₁ ∘ L-sym , inj₂ ∘ R-sym ] respects : ∀ {p} {P : A → Set p} → P Respects L → P Respects R → P Respects (L ∪ R) respects resp-L resp-R = [ resp-L , resp-R ] module _ {≈ : Rel A ℓ₁} (L : REL A B ℓ₂) (R : REL A B ℓ₃) where respˡ : L Respectsˡ ≈ → R Respectsˡ ≈ → (L ∪ R) Respectsˡ ≈ respˡ Lˡ Rˡ x≈y = Sum.map (Lˡ x≈y) (Rˡ x≈y) module _ {≈ : Rel B ℓ₁} (L : REL A B ℓ₂) (R : REL A B ℓ₃) where respʳ : L Respectsʳ ≈ → R Respectsʳ ≈ → (L ∪ R) Respectsʳ ≈ respʳ Lʳ Rʳ x≈y = Sum.map (Lʳ x≈y) (Rʳ x≈y) module _ {≈ : Rel A ℓ₁} {L : Rel A ℓ₂} {R : Rel A ℓ₃} where resp₂ : L Respects₂ ≈ → R Respects₂ ≈ → (L ∪ R) Respects₂ ≈ resp₂ (Lʳ , Lˡ) (Rʳ , Rˡ) = respʳ L R Lʳ Rʳ , respˡ L R Lˡ Rˡ module _ (≈ : REL A B ℓ₁) (L : REL A B ℓ₂) (R : REL A B ℓ₃) where implies : (≈ ⇒ L) ⊎ (≈ ⇒ R) → ≈ ⇒ (L ∪ R) implies = [ inj₁ ∘_ , inj₂ ∘_ ] irreflexive : Irreflexive ≈ L → Irreflexive ≈ R → Irreflexive ≈ (L ∪ R) irreflexive L-irrefl R-irrefl x≈y = [ L-irrefl x≈y , R-irrefl x≈y ] module _ {L : REL A B ℓ₁} {R : REL A B ℓ₂} where decidable : Decidable L → Decidable R → Decidable (L ∪ R) decidable L? R? x y = L? x y ⊎-dec R? x y
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4