------------------------------------------------------------------------ -- The Agda standard library -- -- The binary relation defined by a constant ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Construct.Constant where open import Level using (Level) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Structures using (IsEquivalence) open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive) private variable a b c : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Re-export definition open import Relation.Binary.Construct.Constant.Core public ------------------------------------------------------------------------ -- Properties module _ {a c} (A : Set a) {C : Set c} where refl : C → Reflexive {A = A} (Const C) refl c = c sym : Symmetric {A = A} (Const C) sym c = c trans : Transitive {A = A} (Const C) trans c d = c isEquivalence : C → IsEquivalence {A = A} (Const C) isEquivalence c = record { refl = λ {x} → refl c {x} ; sym = λ {x} {y} → sym {x} {y} ; trans = λ {x} {y} {z} → trans {x} {y} {z} } setoid : C → Setoid a c setoid x = record { isEquivalence = isEquivalence x }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4