------------------------------------------------------------------------ -- The Agda standard library -- -- The universal binary relation ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Construct.Always where open import Relation.Binary.Core using (Rel) open import Relation.Binary.Bundles using (Setoid) open import Relation.Binary.Structures using (IsEquivalence) open import Relation.Binary.Definitions using (Reflexive; Symmetric; Transitive) open import Relation.Binary.Construct.Constant using (Const) open import Data.Unit.Polymorphic using (⊤; tt) ------------------------------------------------------------------------ -- Definition Always : ∀ {a ℓ} {A : Set a} → Rel A ℓ Always = Const ⊤ ------------------------------------------------------------------------ -- Properties module _ {a} (A : Set a) ℓ where refl : Reflexive {A = A} {ℓ = ℓ} Always refl = _ sym : Symmetric {A = A} {ℓ = ℓ} Always sym _ = _ trans : Transitive {A = A} {ℓ = ℓ} Always trans _ _ = _ isEquivalence : IsEquivalence {ℓ = ℓ} {A} Always isEquivalence = record {} setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4