A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://agda.github.io/agda-stdlib/master/Relation.Binary.Construct.Add.Supremum.Equality.html below:

Relation.Binary.Construct.Add.Supremum.Equality

Relation.Binary.Construct.Add.Supremum.Equality
------------------------------------------------------------------------
-- The Agda standard library
--
-- A pointwise lifting of a relation to incorporate a new supremum.
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Supremum

open import Relation.Binary.Core using (Rel)

module Relation.Binary.Construct.Add.Supremum.Equality
  {a } {A : Set a} (_≈_ : Rel A ) where

open import Relation.Binary.Construct.Add.Point.Equality _≈_ public
  renaming
  (_≈∙_                 to _≈⁺_
  ; ∙≈∙                 to ⊤⁺≈⊤⁺
  ; ≈∙-refl             to ≈⁺-refl
  ; ≈∙-sym              to ≈⁺-sym
  ; ≈∙-trans            to ≈⁺-trans
  ; ≈∙-dec              to ≈⁺-dec
  ; ≈∙-irrelevant       to ≈⁺-irrelevant
  ; ≈∙-substitutive     to ≈⁺-substitutive
  ; ≈∙-isEquivalence    to ≈⁺-isEquivalence
  ; ≈∙-isDecEquivalence to ≈⁺-isDecEquivalence
  )

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4