------------------------------------------------------------------------ -- The Agda standard library -- -- Literals used in the reflection machinery ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Reflection.AST.Literal where open import Data.Bool.Base using (Bool; true; false) import Data.Char.Properties as Char import Data.Float.Properties as Float import Data.Nat.Properties as ℕ import Data.String.Properties as String import Data.Word64.Properties as Word64 import Reflection.AST.Meta as Meta import Reflection.AST.Name as Name open import Relation.Nullary.Decidable.Core using (yes; no; map′; isYes) open import Relation.Binary.Definitions using (DecidableEquality) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong) ------------------------------------------------------------------------ -- Re-exporting the builtin type and constructors open import Agda.Builtin.Reflection public using ( Literal ) open Literal public ------------------------------------------------------------------------ -- Decidable equality meta-injective : ∀ {x y} → meta x ≡ meta y → x ≡ y meta-injective refl = refl nat-injective : ∀ {x y} → nat x ≡ nat y → x ≡ y nat-injective refl = refl word64-injective : ∀ {x y} → word64 x ≡ word64 y → x ≡ y word64-injective refl = refl float-injective : ∀ {x y} → float x ≡ float y → x ≡ y float-injective refl = refl char-injective : ∀ {x y} → char x ≡ char y → x ≡ y char-injective refl = refl string-injective : ∀ {x y} → string x ≡ string y → x ≡ y string-injective refl = refl name-injective : ∀ {x y} → name x ≡ name y → x ≡ y name-injective refl = refl infix 4 _≟_ _≟_ : DecidableEquality Literal nat x ≟ nat x₁ = map′ (cong nat) nat-injective (x ℕ.≟ x₁) nat x ≟ word64 x₁ = no (λ ()) nat x ≟ float x₁ = no (λ ()) nat x ≟ char x₁ = no (λ ()) nat x ≟ string x₁ = no (λ ()) nat x ≟ name x₁ = no (λ ()) nat x ≟ meta x₁ = no (λ ()) word64 x ≟ word64 x₁ = map′ (cong word64) word64-injective (x Word64.≟ x₁) word64 x ≟ nat x₁ = no (λ ()) word64 x ≟ float x₁ = no (λ ()) word64 x ≟ char x₁ = no (λ ()) word64 x ≟ string x₁ = no (λ ()) word64 x ≟ name x₁ = no (λ ()) word64 x ≟ meta x₁ = no (λ ()) float x ≟ nat x₁ = no (λ ()) float x ≟ word64 x₁ = no (λ ()) float x ≟ float x₁ = map′ (cong float) float-injective (x Float.≟ x₁) float x ≟ char x₁ = no (λ ()) float x ≟ string x₁ = no (λ ()) float x ≟ name x₁ = no (λ ()) float x ≟ meta x₁ = no (λ ()) char x ≟ nat x₁ = no (λ ()) char x ≟ word64 x₁ = no (λ ()) char x ≟ float x₁ = no (λ ()) char x ≟ char x₁ = map′ (cong char) char-injective (x Char.≟ x₁) char x ≟ string x₁ = no (λ ()) char x ≟ name x₁ = no (λ ()) char x ≟ meta x₁ = no (λ ()) string x ≟ nat x₁ = no (λ ()) string x ≟ word64 x₁ = no (λ ()) string x ≟ float x₁ = no (λ ()) string x ≟ char x₁ = no (λ ()) string x ≟ string x₁ = map′ (cong string) string-injective (x String.≟ x₁) string x ≟ name x₁ = no (λ ()) string x ≟ meta x₁ = no (λ ()) name x ≟ nat x₁ = no (λ ()) name x ≟ word64 x₁ = no (λ ()) name x ≟ float x₁ = no (λ ()) name x ≟ char x₁ = no (λ ()) name x ≟ string x₁ = no (λ ()) name x ≟ name x₁ = map′ (cong name) name-injective (x Name.≟ x₁) name x ≟ meta x₁ = no (λ ()) meta x ≟ nat x₁ = no (λ ()) meta x ≟ word64 x₁ = no (λ ()) meta x ≟ float x₁ = no (λ ()) meta x ≟ char x₁ = no (λ ()) meta x ≟ string x₁ = no (λ ()) meta x ≟ name x₁ = no (λ ()) meta x ≟ meta x₁ = map′ (cong meta) meta-injective (x Meta.≟ x₁) infix 4 _≡ᵇ_ _≡ᵇ_ : Literal → Literal → Bool l ≡ᵇ l′ = isYes (l ≟ l′)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4