------------------------------------------------------------------------ -- The Agda standard library -- -- Alpha equality over terms ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Reflection.AST.AlphaEquality where open import Data.Bool.Base using (Bool; true; false; _∧_) open import Data.List.Base using ([]; _∷_) open import Data.Nat.Base as ℕ using (ℕ; zero; suc; _≡ᵇ_) open import Data.Product.Base using (_,_) open import Relation.Nullary.Decidable.Core using (⌊_⌋) open import Relation.Binary.Definitions using (DecidableEquality) open import Reflection.AST.Abstraction using (Abs; abs) open import Reflection.AST.Argument using (Arg; arg; Args) open import Reflection.AST.Argument.Information as ArgInfo using (ArgInfo) open import Reflection.AST.Argument.Modality as Modality using (Modality) open import Reflection.AST.Argument.Visibility as Visibility using (Visibility) open import Reflection.AST.Meta as Meta using (Meta) open import Reflection.AST.Name as Name using (Name) open import Reflection.AST.Literal as Literal using (Literal) open import Reflection.AST.Term open import Level using (Level) private variable a : Level A : Set a ------------------------------------------------------------------------ -- Definition record AlphaEquality (A : Set) : Set where constructor mkAlphaEquality infix 4 _=α=_ field _=α=_ : A → A → Bool open AlphaEquality {{...}} public ------------------------------------------------------------------------ -- Utilities ≟⇒α : DecidableEquality A → AlphaEquality A ≟⇒α _≟_ = mkAlphaEquality (λ x y → ⌊ x ≟ y ⌋) ------------------------------------------------------------------------ -- Propositional cases -- In the following cases alpha equality coincides with propositiona -- equality instance α-Visibility : AlphaEquality Visibility α-Visibility = ≟⇒α Visibility._≟_ α-Modality : AlphaEquality Modality α-Modality = ≟⇒α Modality._≟_ α-ArgInfo : AlphaEquality ArgInfo α-ArgInfo = ≟⇒α ArgInfo._≟_ α-Literal : AlphaEquality Literal α-Literal = ≟⇒α Literal._≟_ α-Meta : AlphaEquality Meta α-Meta = ≟⇒α Meta._≟_ α-Name : AlphaEquality Name α-Name = ≟⇒α Name._≟_ ------------------------------------------------------------------------ -- Interesting cases -- This is where we deviate from propositional equality and ignore the -- names of the binders. -- Unfortunately we can't declare these as instances directly as the -- termination checker isn't clever enough to peer inside the records. mutual _=α=-AbsTerm_ : Abs Term → Abs Term → Bool (abs s a) =α=-AbsTerm (abs s′ a′) = a =α=-Term a′ _=α=-Telescope_ : Telescope → Telescope → Bool [] =α=-Telescope [] = true ((s , x) ∷ xs) =α=-Telescope ((s' , x′) ∷ xs′) = (x =α=-ArgTerm x′) ∧ (xs =α=-Telescope xs′) [] =α=-Telescope (_ ∷ _) = false (_ ∷ _) =α=-Telescope [] = false ------------------------------------------------------------------------ -- Remaining cases -- The following cases simply recurse over the remaining AST in exactly -- the same way as propositional equality. _=α=-ArgTerm_ : Arg Term → Arg Term → Bool (arg i a) =α=-ArgTerm (arg i′ a′) = a =α=-Term a′ _=α=-ArgPattern_ : Arg Pattern → Arg Pattern → Bool (arg i a) =α=-ArgPattern (arg i′ a′) = a =α=-Pattern a′ _=α=-Term_ : Term → Term → Bool (var x args) =α=-Term (var x′ args′) = (x ℕ.≡ᵇ x′) ∧ (args =α=-ArgsTerm args′) (con c args) =α=-Term (con c′ args′) = (c =α= c′) ∧ (args =α=-ArgsTerm args′) (def f args) =α=-Term (def f′ args′) = (f =α= f′) ∧ (args =α=-ArgsTerm args′) (meta x args) =α=-Term (meta x′ args′) = (x =α= x′) ∧ (args =α=-ArgsTerm args′) (pat-lam cs args) =α=-Term (pat-lam cs′ args′) = (cs =α=-Clauses cs′) ∧ (args =α=-ArgsTerm args′) (pi t₁ t₂ ) =α=-Term (pi t₁′ t₂′ ) = (t₁ =α=-ArgTerm t₁′) ∧ (t₂ =α=-AbsTerm t₂′) (sort s ) =α=-Term (sort s′ ) = s =α=-Sort s′ (lam v t ) =α=-Term (lam v′ t′ ) = (v =α= v′) ∧ (t =α=-AbsTerm t′) (lit l ) =α=-Term (lit l′ ) = l =α= l′ (unknown ) =α=-Term (unknown ) = true (var x args ) =α=-Term (con c args′) = false (var x args ) =α=-Term (def f args′) = false (var x args ) =α=-Term (lam v t ) = false (var x args ) =α=-Term (pi t₁ t₂ ) = false (var x args ) =α=-Term (sort _ ) = false (var x args ) =α=-Term (lit _ ) = false (var x args ) =α=-Term (meta _ _ ) = false (var x args ) =α=-Term (unknown ) = false (con c args ) =α=-Term (var x args′) = false (con c args ) =α=-Term (def f args′) = false (con c args ) =α=-Term (lam v t ) = false (con c args ) =α=-Term (pi t₁ t₂ ) = false (con c args ) =α=-Term (sort _ ) = false (con c args ) =α=-Term (lit _ ) = false (con c args ) =α=-Term (meta _ _ ) = false (con c args ) =α=-Term (unknown ) = false (def f args ) =α=-Term (var x args′) = false (def f args ) =α=-Term (con c args′) = false (def f args ) =α=-Term (lam v t ) = false (def f args ) =α=-Term (pi t₁ t₂ ) = false (def f args ) =α=-Term (sort _ ) = false (def f args ) =α=-Term (lit _ ) = false (def f args ) =α=-Term (meta _ _ ) = false (def f args ) =α=-Term (unknown ) = false (lam v t ) =α=-Term (var x args ) = false (lam v t ) =α=-Term (con c args ) = false (lam v t ) =α=-Term (def f args ) = false (lam v t ) =α=-Term (pi t₁ t₂ ) = false (lam v t ) =α=-Term (sort _ ) = false (lam v t ) =α=-Term (lit _ ) = false (lam v t ) =α=-Term (meta _ _ ) = false (lam v t ) =α=-Term (unknown ) = false (pi t₁ t₂ ) =α=-Term (var x args ) = false (pi t₁ t₂ ) =α=-Term (con c args ) = false (pi t₁ t₂ ) =α=-Term (def f args ) = false (pi t₁ t₂ ) =α=-Term (lam v t ) = false (pi t₁ t₂ ) =α=-Term (sort _ ) = false (pi t₁ t₂ ) =α=-Term (lit _ ) = false (pi t₁ t₂ ) =α=-Term (meta _ _ ) = false (pi t₁ t₂ ) =α=-Term (unknown ) = false (sort _ ) =α=-Term (var x args ) = false (sort _ ) =α=-Term (con c args ) = false (sort _ ) =α=-Term (def f args ) = false (sort _ ) =α=-Term (lam v t ) = false (sort _ ) =α=-Term (pi t₁ t₂ ) = false (sort _ ) =α=-Term (lit _ ) = false (sort _ ) =α=-Term (meta _ _ ) = false (sort _ ) =α=-Term (unknown ) = false (lit _ ) =α=-Term (var x args ) = false (lit _ ) =α=-Term (con c args ) = false (lit _ ) =α=-Term (def f args ) = false (lit _ ) =α=-Term (lam v t ) = false (lit _ ) =α=-Term (pi t₁ t₂ ) = false (lit _ ) =α=-Term (sort _ ) = false (lit _ ) =α=-Term (meta _ _ ) = false (lit _ ) =α=-Term (unknown ) = false (meta _ _ ) =α=-Term (var x args ) = false (meta _ _ ) =α=-Term (con c args ) = false (meta _ _ ) =α=-Term (def f args ) = false (meta _ _ ) =α=-Term (lam v t ) = false (meta _ _ ) =α=-Term (pi t₁ t₂ ) = false (meta _ _ ) =α=-Term (sort _ ) = false (meta _ _ ) =α=-Term (lit _ ) = false (meta _ _ ) =α=-Term (unknown ) = false (unknown ) =α=-Term (var x args ) = false (unknown ) =α=-Term (con c args ) = false (unknown ) =α=-Term (def f args ) = false (unknown ) =α=-Term (lam v t ) = false (unknown ) =α=-Term (pi t₁ t₂ ) = false (unknown ) =α=-Term (sort _ ) = false (unknown ) =α=-Term (lit _ ) = false (unknown ) =α=-Term (meta _ _ ) = false (pat-lam _ _) =α=-Term (var x args ) = false (pat-lam _ _) =α=-Term (con c args ) = false (pat-lam _ _) =α=-Term (def f args ) = false (pat-lam _ _) =α=-Term (lam v t ) = false (pat-lam _ _) =α=-Term (pi t₁ t₂ ) = false (pat-lam _ _) =α=-Term (sort _ ) = false (pat-lam _ _) =α=-Term (lit _ ) = false (pat-lam _ _) =α=-Term (meta _ _ ) = false (pat-lam _ _) =α=-Term (unknown ) = false (var x args ) =α=-Term (pat-lam _ _) = false (con c args ) =α=-Term (pat-lam _ _) = false (def f args ) =α=-Term (pat-lam _ _) = false (lam v t ) =α=-Term (pat-lam _ _) = false (pi t₁ t₂ ) =α=-Term (pat-lam _ _) = false (sort _ ) =α=-Term (pat-lam _ _) = false (lit _ ) =α=-Term (pat-lam _ _) = false (meta _ _ ) =α=-Term (pat-lam _ _) = false (unknown ) =α=-Term (pat-lam _ _) = false _=α=-Sort_ : Sort → Sort → Bool (set t ) =α=-Sort (set t′ ) = t =α=-Term t′ (lit n ) =α=-Sort (lit n′ ) = n ℕ.≡ᵇ n′ (prop t ) =α=-Sort (prop t′ ) = t =α=-Term t′ (propLit n) =α=-Sort (propLit n′) = n ℕ.≡ᵇ n′ (inf n ) =α=-Sort (inf n′ ) = n ℕ.≡ᵇ n′ (unknown ) =α=-Sort (unknown ) = true (set _ ) =α=-Sort (lit _ ) = false (set _ ) =α=-Sort (prop _ ) = false (set _ ) =α=-Sort (propLit _) = false (set _ ) =α=-Sort (inf _ ) = false (set _ ) =α=-Sort (unknown ) = false (lit _ ) =α=-Sort (set _ ) = false (lit _ ) =α=-Sort (prop _ ) = false (lit _ ) =α=-Sort (propLit _) = false (lit _ ) =α=-Sort (inf _ ) = false (lit _ ) =α=-Sort (unknown ) = false (prop _ ) =α=-Sort (set _ ) = false (prop _ ) =α=-Sort (lit _ ) = false (prop _ ) =α=-Sort (propLit _) = false (prop _ ) =α=-Sort (inf _ ) = false (prop _ ) =α=-Sort (unknown ) = false (propLit _) =α=-Sort (set _ ) = false (propLit _) =α=-Sort (lit _ ) = false (propLit _) =α=-Sort (prop _ ) = false (propLit _) =α=-Sort (inf _ ) = false (propLit _) =α=-Sort (unknown ) = false (inf _ ) =α=-Sort (set _ ) = false (inf _ ) =α=-Sort (lit _ ) = false (inf _ ) =α=-Sort (prop _ ) = false (inf _ ) =α=-Sort (propLit _) = false (inf _ ) =α=-Sort (unknown ) = false (unknown ) =α=-Sort (set _ ) = false (unknown ) =α=-Sort (lit _ ) = false (unknown ) =α=-Sort (prop _ ) = false (unknown ) =α=-Sort (propLit _) = false (unknown ) =α=-Sort (inf _ ) = false _=α=-Clause_ : Clause → Clause → Bool (clause tel ps b) =α=-Clause (clause tel′ ps′ b′) = (tel =α=-Telescope tel′) ∧ (ps =α=-ArgsPattern ps′) ∧ (b =α=-Term b′) (absurd-clause tel ps) =α=-Clause (absurd-clause tel′ ps′) = (tel =α=-Telescope tel′) ∧ (ps =α=-ArgsPattern ps′) (clause _ _ _) =α=-Clause (absurd-clause _ _) = false (absurd-clause _ _) =α=-Clause (clause _ _ _) = false _=α=-Clauses_ : Clauses → Clauses → Bool [] =α=-Clauses [] = true (x ∷ xs) =α=-Clauses (x′ ∷ xs′) = (x =α=-Clause x′) ∧ (xs =α=-Clauses xs′) [] =α=-Clauses (_ ∷ _) = false (_ ∷ _) =α=-Clauses [] = false _=α=-ArgsTerm_ : Args Term → Args Term → Bool [] =α=-ArgsTerm [] = true (x ∷ xs) =α=-ArgsTerm (x′ ∷ xs′) = (x =α=-ArgTerm x′) ∧ (xs =α=-ArgsTerm xs′) [] =α=-ArgsTerm (_ ∷ _) = false (_ ∷ _) =α=-ArgsTerm [] = false _=α=-Pattern_ : Pattern → Pattern → Bool (con c ps) =α=-Pattern (con c′ ps′) = (c =α= c′) ∧ (ps =α=-ArgsPattern ps′) (var x ) =α=-Pattern (var x′ ) = x ℕ.≡ᵇ x′ (lit l ) =α=-Pattern (lit l′ ) = l =α= l′ (proj a ) =α=-Pattern (proj a′ ) = a =α= a′ (dot t ) =α=-Pattern (dot t′ ) = t =α=-Term t′ (absurd x) =α=-Pattern (absurd x′ ) = x ℕ.≡ᵇ x′ (con x x₁) =α=-Pattern (dot x₂ ) = false (con x x₁) =α=-Pattern (var x₂ ) = false (con x x₁) =α=-Pattern (lit x₂ ) = false (con x x₁) =α=-Pattern (proj x₂ ) = false (con x x₁) =α=-Pattern (absurd x₂ ) = false (dot x ) =α=-Pattern (con x₁ x₂ ) = false (dot x ) =α=-Pattern (var x₁ ) = false (dot x ) =α=-Pattern (lit x₁ ) = false (dot x ) =α=-Pattern (proj x₁ ) = false (dot x ) =α=-Pattern (absurd x₁ ) = false (var s ) =α=-Pattern (con x x₁ ) = false (var s ) =α=-Pattern (dot x ) = false (var s ) =α=-Pattern (lit x ) = false (var s ) =α=-Pattern (proj x ) = false (var s ) =α=-Pattern (absurd x ) = false (lit x ) =α=-Pattern (con x₁ x₂ ) = false (lit x ) =α=-Pattern (dot x₁ ) = false (lit x ) =α=-Pattern (var _ ) = false (lit x ) =α=-Pattern (proj x₁ ) = false (lit x ) =α=-Pattern (absurd x₁ ) = false (proj x ) =α=-Pattern (con x₁ x₂ ) = false (proj x ) =α=-Pattern (dot x₁ ) = false (proj x ) =α=-Pattern (var _ ) = false (proj x ) =α=-Pattern (lit x₁ ) = false (proj x ) =α=-Pattern (absurd x₁ ) = false (absurd x) =α=-Pattern (con x₁ x₂ ) = false (absurd x) =α=-Pattern (dot x₁ ) = false (absurd x) =α=-Pattern (var _ ) = false (absurd x) =α=-Pattern (lit x₁ ) = false (absurd x) =α=-Pattern (proj x₁ ) = false _=α=-ArgsPattern_ : Args Pattern → Args Pattern → Bool [] =α=-ArgsPattern [] = true (x ∷ xs) =α=-ArgsPattern (x′ ∷ xs′) = (x =α=-ArgPattern x′) ∧ (xs =α=-ArgsPattern xs′) [] =α=-ArgsPattern (_ ∷ _) = false (_ ∷ _) =α=-ArgsPattern [] = false ------------------------------------------------------------------------ -- Instance declarations for mutually recursive cases instance α-AbsTerm : AlphaEquality (Abs Term) α-AbsTerm = mkAlphaEquality _=α=-AbsTerm_ α-ArgTerm : AlphaEquality (Arg Term) α-ArgTerm = mkAlphaEquality _=α=-ArgTerm_ α-ArgPattern : AlphaEquality (Arg Pattern) α-ArgPattern = mkAlphaEquality _=α=-ArgPattern_ α-Telescope : AlphaEquality Telescope α-Telescope = mkAlphaEquality _=α=-Telescope_ α-Term : AlphaEquality Term α-Term = mkAlphaEquality _=α=-Term_ α-Sort : AlphaEquality Sort α-Sort = mkAlphaEquality _=α=-Sort_ α-Clause : AlphaEquality Clause α-Clause = mkAlphaEquality _=α=-Clause_ α-Clauses : AlphaEquality Clauses α-Clauses = mkAlphaEquality _=α=-Clauses_ α-ArgsTerm : AlphaEquality (Args Term) α-ArgsTerm = mkAlphaEquality _=α=-ArgsTerm_ α-Pattern : AlphaEquality Pattern α-Pattern = mkAlphaEquality _=α=-Pattern_ α-ArgsPattern : AlphaEquality (Args Pattern) α-ArgsPattern = mkAlphaEquality _=α=-ArgsPattern_
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4