------------------------------------------------------------------------ -- The Agda standard library -- -- Operations on Relations for Indexed sets ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Function.Indexed.Bundles where open import Relation.Unary using (Pred) open import Function.Bundles using (_⟶_; _↣_; _↠_; _⤖_; _⇔_; _↩_; _↪_; _↩↪_; _↔_) open import Relation.Binary.Core hiding (_⇔_) open import Level using (Level) private variable a b i : Level I : Set i ------------------------------------------------------------------------ -- Bundles specialised for lifting relations to indexed sets ------------------------------------------------------------------------ infix 3 _⟶ᵢ_ _↣ᵢ_ _↠ᵢ_ _⤖ᵢ_ _⇔ᵢ_ _↩ᵢ_ _↪ᵢ_ _↩↪ᵢ_ _↔ᵢ_ _⟶ᵢ_ : Pred I a → Pred I b → Set _ A ⟶ᵢ B = ∀ {i} → A i ⟶ B i _↣ᵢ_ : Pred I a → Pred I b → Set _ A ↣ᵢ B = ∀ {i} → A i ↣ B i _↠ᵢ_ : Pred I a → Pred I b → Set _ A ↠ᵢ B = ∀ {i} → A i ↠ B i _⤖ᵢ_ : Pred I a → Pred I b → Set _ A ⤖ᵢ B = ∀ {i} → A i ⤖ B i _⇔ᵢ_ : Pred I a → Pred I b → Set _ A ⇔ᵢ B = ∀ {i} → A i ⇔ B i _↩ᵢ_ : Pred I a → Pred I b → Set _ A ↩ᵢ B = ∀ {i} → A i ↩ B i _↪ᵢ_ : Pred I a → Pred I b → Set _ A ↪ᵢ B = ∀ {i} → A i ↪ B i _↩↪ᵢ_ : Pred I a → Pred I b → Set _ A ↩↪ᵢ B = ∀ {i} → A i ↩↪ B i _↔ᵢ_ : Pred I a → Pred I b → Set _ A ↔ᵢ B = ∀ {i} → A i ↔ B i
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4