------------------------------------------------------------------------ -- The Agda standard library -- -- Vectors where every pair of elements are related (symmetrically) ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core using (Rel; _⇒_) module Data.Vec.Relation.Unary.AllPairs {a ℓ} {A : Set a} {R : Rel A ℓ} where open import Data.Nat.Base using (suc) open import Data.Vec.Base as Vec using (Vec; []; _∷_) open import Data.Vec.Relation.Unary.All as All using (All; []; _∷_) open import Data.Product.Base as Prod using (_,_; _×_; uncurry; <_,_>) open import Function.Base using (id; _∘_) open import Level using (_⊔_) open import Relation.Binary.Definitions as B open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_) open import Relation.Binary.PropositionalEquality.Core using (refl; cong₂) open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_) open import Relation.Nullary.Decidable as Dec using (yes; no; _×-dec_) ------------------------------------------------------------------------ -- Definition open import Data.Vec.Relation.Unary.AllPairs.Core public ------------------------------------------------------------------------ -- Operations head : ∀ {n} {xs : Vec A (suc n)} → AllPairs R xs → All (R (Vec.head xs)) (Vec.tail xs) head (px ∷ pxs) = px tail : ∀ {n} {xs : Vec A (suc n)} → AllPairs R xs → AllPairs R (Vec.tail xs) tail (px ∷ pxs) = pxs uncons : ∀ {n} {xs : Vec A (suc n)} → AllPairs R xs → All (R (Vec.head xs)) (Vec.tail xs) × AllPairs R (Vec.tail xs) uncons = < head , tail > module _ {s} {S : Rel A s} where map : ∀ {n} → R ⇒ S → AllPairs R {n} ⊆ AllPairs S {n} map ~₁⇒~₂ [] = [] map ~₁⇒~₂ (x~xs ∷ pxs) = All.map ~₁⇒~₂ x~xs ∷ (map ~₁⇒~₂ pxs) module _ {s t} {S : Rel A s} {T : Rel A t} where zipWith : ∀ {n} → R ∩ᵇ S ⇒ T → AllPairs R {n} ∩ᵘ AllPairs S {n} ⊆ AllPairs T {n} zipWith f ([] , []) = [] zipWith f (px ∷ pxs , qx ∷ qxs) = All.map f (All.zip (px , qx)) ∷ zipWith f (pxs , qxs) unzipWith : ∀ {n} → T ⇒ R ∩ᵇ S → AllPairs T {n} ⊆ AllPairs R {n} ∩ᵘ AllPairs S {n} unzipWith f [] = [] , [] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (All.unzip (All.map f rx)) (unzipWith f rxs) module _ {s} {S : Rel A s} where zip : ∀ {n} → AllPairs R {n} ∩ᵘ AllPairs S {n} ⊆ AllPairs (R ∩ᵇ S) {n} zip = zipWith id unzip : ∀ {n} → AllPairs (R ∩ᵇ S) {n} ⊆ AllPairs R {n} ∩ᵘ AllPairs S {n} unzip = unzipWith id ------------------------------------------------------------------------ -- Properties of predicates preserved by AllPairs allPairs? : ∀ {n} → B.Decidable R → U.Decidable (AllPairs R {n}) allPairs? R? [] = yes [] allPairs? R? (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (All.all? (R? x) xs ×-dec allPairs? R? xs) irrelevant : ∀ {n} → B.Irrelevant R → U.Irrelevant (AllPairs R {n}) irrelevant irr [] [] = refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = cong₂ _∷_ (All.irrelevant irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : U.Satisfiable (AllPairs R) satisfiable = [] , []
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4