------------------------------------------------------------------------ -- The Agda standard library -- -- Vector equality over propositional equality ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Data.Vec.Relation.Binary.Equality.Propositional {a} {A : Set a} where open import Data.Nat.Base using (ℕ; zero; suc; _+_) open import Data.Vec.Base using (Vec) open import Data.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise-≡⇒≡; ≡⇒Pointwise-≡) import Data.Vec.Relation.Binary.Equality.Setoid as SEq open import Relation.Binary.PropositionalEquality.Core using (_≡_) open import Relation.Binary.PropositionalEquality.Properties using (setoid) ------------------------------------------------------------------------ -- Publically re-export everything from setoid equality open SEq (setoid A) public ------------------------------------------------------------------------ -- ≋ is propositional ≋⇒≡ : ∀ {n} {xs ys : Vec A n} → xs ≋ ys → xs ≡ ys ≋⇒≡ = Pointwise-≡⇒≡ ≡⇒≋ : ∀ {n} {xs ys : Vec A n} → xs ≡ ys → xs ≋ ys ≡⇒≋ = ≡⇒Pointwise-≡ -- See also Data.Vec.Relation.Binary.Equality.Propositional.WithK.≋⇒≅.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4